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Abstract

This is a partial draft of a review article in preparation for Physics Reports, provided to members
of the WFIRST Science Definition Team for reference. We have included only those sections that
are close to complete. However, even these sections are still subject to change, so we request that
this draft not be circulated beyond the SDT. We plan to solicit comments on the full manuscript
before it is submitted to the journal.
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1. Introduction

Gravity pulls. Newton’s Principia generalized this longstanding fact of human experience into a
universal attractive force, providing compelling explanations of an extraordinary range of terrestrial
and celestial phenomena. Newtonian attraction weakens with distance, but it never vanishes, and
it never changes sign. Einstein’s theory of General Relativity (GR) reproduces Newtonian gravity
in the limit of weak spacetime curvature and low velocities. For a homogeneous universe filled with
matter or radiation, GR predicts that the cosmic expansion will slow down over time, in accord with
Newtonian intuition. In the late 1990s, however, two independent studies of distant supernovae
found that the expansion of the universe has accelerated over the last five billion years (Riess et al.,
1998; Perlmutter et al., 1999), a remarkable discovery that is now buttressed by multiple lines of
independent evidence. On the scale of the cosmos, gravity repels.

Cosmic acceleration is the most profound puzzle in contemporary physics. Even the least exotic
explanations demand the existence of a pervasive new component of the universe with unusual
physical properties that lead to repulsive gravity. Alternatively, acceleration could be a sign that
GR itself breaks down on cosmological scales. Cosmic accleration may be the crucial empirical clue
that leads to understanding the interaction between gravity and the quantum vacuum, or reveals
the existence of extra spatial dimensions, or sheds light on the nature of quantum gravity itself.

Because of these profound implications, cosmic acceleration has inspired a wide range of am-
bitious experimental efforts, which aim to measure the expansion history and growth of structure
in the cosmos with percent-level precision or higher. In this article, we review the observational
methods that underlie these efforts, with particular attention to techniques that are likely to see
major advances over the next decade. We will emphasize the value of a balanced program that
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pursues several of these methods in combination, both to cross-check systematic uncertainties and
to take advantge of complementary information.

The remainder of this introduction briefly recaps the history of cosmic acceleration and current
theories for its origin, then sets this article in the context of future experimental efforts and other
reviews of the field. Section 2 describes the basic observables that can be used to probe cosmic
acceleration, relates them to the underlying equations that govern the expansion history and the
growth of structure, and introduces some of the parameters commonly used to define “generic”
cosmic acceleration models. It concludes with an overview of the leading methods for measuring
these observables. In Sections 3-6, we go through the four most well developed methods in detail:
Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and clusters
of galaxies. Section 7 summarizes several other potential probes, whose prospects are currently
more difficult to assess. Informed by the discussions in these sections, §8 presents our principal
new results: forecasts of the constraints on cosmic acceleration models that could be achieved by
combining results from these methods, based on ambitious but feasible experiments like the ones
endorsed by the Astro2010 Decadal Survey report, New Worlds, New Horizons in Astronomy and

Astrophysics. We summarize the implications of our analyses in §9.

1.1. History

Just two years after the completion of General Relativity, Einstein (1917) introduced the first
modern cosmological model. With little observational guidance, Einstein assumed (correctly) that
the universe is homogeneous on large scales, and he proposed a matter-filled space with finite,
positively curved, 3-sphere geometry. He also assumed (incorrectly) that the universe is static.
Finding these two assumptions to be incompatible, Einstein modified the GR field equation to
include the infamous “cosmological term,” now usually known as the “cosmological constant” and
denoted Λ. In effect, he added a new component whose repulsive gravity could balance the attractive
gravity of the matter (though he did not describe his modification in these terms). In the 1920s,
Friedmann (?) and Lemaitre (?) introduced GR-based cosmological models with an expanding
or contracting universe, some of them including a cosmological constant, others not. In 1929,
Hubble discovered direct evidence for the expansion of the universe (Hubble, 1929), thus removing
the original motivation for the Λ term. In 1965, the discovery and interpretation of the cosmic
microwave background (Penzias and Wilson, 1965; Dicke et al., 1965) provided the pivotal evidence
for a hot big bang origin of the cosmos.

From the 1930s through the 1980s, a cosmological constant seemed unnecessary to explaining
cosmological observations. The “cosmological constant problem” as it was defined in the 1980s
was a theoretical one: why was the gravitational impact of the quantum vacuum vanishingly small
compared to the “naturally” expected value (see §1.2)? In the late 1980s and early 1990s, however,
a variety of indirect evidence began to accumulate in favor of a cosmological constant. Studies
of large scale galaxy clustering, interpreted in the framework of cold dark matter models with
inflationary initial conditions, implied a low matter density parameter Ωm = ρm/ρcrit ≈ 0.15 − 0.4
(e.g., Maddox et al. 1990; Efstathiou et al. 1990), in agreement with direct dynamical estimates
that assumed galaxies to be fair tracers of the mass distribution. Reconciling this result with
the standard inflationary cosmology prediction of a spatially flat universe (Guth, 1981) required a
new energy component with density parameter 1 − Ωm. Open-universe inflation models were also
considered, but explaining the homogeneity of the cosmic microwave background (CMB) in such
models required speculative appeals to quantum gravity effects (e.g., Bucher et al. 1995) rather
than the semi-classical explanation of traditional inflation.

By the mid-1990s, many cosmological simulation studies included both open-CDM models and
Λ-CDM models, along with Ωm = 1 models incorporating tilted inflationary spectra, non-standard
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radiation components, or massive neutrino components (e.g., ?). Once normalized to the observed
level of CMB anisotropies, the large-scale structure predictions of open and flat-Λ models differed at
the tens-of-percent level, with flat models generally yielding a more natural fit to the observations
(e.g., Cole et al. 1997). Thus, the combination of CMB data, large-scale structure data, and
inflationary theory led many cosmologists to consider models with a cosmological constant, and
some to declare it as the preferred solution (e.g., Efstathiou et al. 1990; Krauss and Turner 1995;
Ostriker and Steinhardt 1995).

Enter the supernovae. In the mid-1990s, two teams set out to measure the cosmic deceleration
rate, and thereby determine the matter density parameter Ωm, by discovering and monitoring high-
redshift, Type Ia supernovae. The recognition that the peak luminosity of supernovae was tightly
correlated with the shape of the light curve (Phillips, 1993; Riess et al., 1996) played a critical
role in this strategy, reducing the intrinsic distance error per supernova to ∼ 10%. While the first
analysis of a small sample indicated deceleration (Perlmutter et al., 1997), by 1999 the two teams
had converged on a remarkable result: when compared to local Type Ia supernovae, the supernovae
at z ≈ 0.5 were fainter than expected in a matter-dominated universe with Ωm ≈ 0.2 by about 0.2
mag, or 20% (Riess et al., 1998; Perlmutter et al., 1999). Even an empty, freely expanding universe
was inconsistent with the observations. Both teams interpreted their measurements as evidence for
an accelerating universe with a cosmological constant, consistent with a flat universe (Ωtot = 1)
having ΩΛ ≈ 0.7.

Why was the supernova evidence for cosmic acceleration accepted so quickly by the community
at large? First, the internal checks carried out by the two teams, and the agreement of their con-
clusions despite independent observations and many differences of methodology, seemed to rule out
many forms of observational systematics, even relatively subtle effects of photometric calibration
or selection bias. Second, the ground had been well prepared by the CMB and large scale struc-
ture data, which already provided substantial indirect evidence for a cosmological constant. This
confluence of arguments favored the cosmological interpretation of the results over astrophysical
explanations such as evolution of the supernova population or grey dust extinction that increased
towards higher redshifts. Third, the supernova results were followed within a year by the results
of balloon-borne CMB experiments that mapped the first acoustic peak and measured its angular
location, providing strong evidence for spatial flatness (de Bernardis et al. 2000; Hanany et al. 2000;
see Netterfield et al. 1997 for earlier ground-based measurements hinting at the same result). On its
own, the acoustic peak only implied Ωtot ≈ 1, not a non-zero ΩΛ, but it dovetailed perfectly with the
estimates of Ωm and ΩΛ from large scale structure and supernovae. Furthermore, the acoustic peak
measurement implied that the alternative to Λ was not an open universe but a strongly decelerating,
Ωm = 1 universe, which disagreed with the supernova data by 0.5 magnitudes, a level much harder
to explain with observational or astrophysical effects. Finally, the combination of spatial flatness
and improving measurements of the Hubble constant (e.g., H0 = 71 ± 6 km s−1 Mpc−1; Mould
et al. 2000) provided an entirely independent argument for an energetically dominant accelerating
component: a matter-dominated universe with Ωtot = 1 would have age t0 = (2/3)H−1

0 ≈ 9.5
Gyr, too young to accommodate the 12-14 Gyr ages estimated for globular clusters (e.g., Chaboyer
1998).

A decade later, the web of observational evidence for cosmic acceleration is intricate and robust.
A wide range of observations, including larger and better calibrated supernova samples over a wider
redshift range, high-precision CMB data down to small angular scales, the baryon acoustic scale in
galaxy clustering, weak lensing measurements of dark matter clustering, the abundance of massive
clusters in X-ray and optical surveys, the level of structure in the Lyα forest, and precise measure-
ments of H0, are all consistent with an inflationary cold dark matter model with a cosmological
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constant, commonly abbreviated as ΛCDM.1 Explaining all of these data simultaneously requires

an accelerating universe. Completely eliminating any one class of constraints (e.g., supernovae, or
CMB, or H0) would not change this conclusion, nor would doubling the estimated systematic errors
on all of them. The question is no longer whether the universe is accelerating, but why.

1.2. Theories of Cosmic Acceleration

A cosmological constant is the mathematically simplest solution to the cosmic acceleration
puzzle. While Einstein introduced his cosmological term as a modification to the curvature side of
the field equation, it is now more common to interpret Λ as a new energy component, constant in
space and time. For an ideal fluid with energy density u and pressure p, the effective gravitational
source term in GR is (u + 3p)/c2, reducing to the usual mass density ρ = u/c2 if the fluid is
non-relativistic. For a component whose energy density remains constant as the universe expands,
the first law of thermodynamics implies that when a comoving volume element in the universe
expands by a (physical) amount dV , the corresponding change in energy is related to the pressure
via −pdV = dU = udV , making the gravitational source term −2u/c2. A form of energy that is
constant in space and time must have a repulsive gravitational effect.

According to quantum field theory, “empty” space is filled with a sea of virtual particles. It
would be reasonable to interpret the cosmological constant as the gravitational signature of this
quantum vacuum energy, much as the Lamb shift is a signature of its electromagnetic effects.2

The problem is one of magnitude. Since virtual particles of any allowable mass can come into
existence for short periods of time, the “natural” value for the quantum vacuum density is one
Planck Mass per cubic Planck Length. This density is about 120 orders of magnitude larger than
the cosmological constant suggested by observations: it would drive accelerated expansion with a
timescale of tPlanck ≈ 10−43 sec instead of tHubble ≈ 1018 sec. Since the only “natural” number close
to 10−120 is zero, it was generally assumed (prior to 1990) that a correct calculation of the quantum
vacuum energy would eventually show it to be zero, or at least suppressed by an extremely large
exponential factor (see review by Weinberg 1989). But the discovery of cosmic acceleration raises
the possibility that the quantum vacuum really does act as a cosmological constant, and that its
energy scale is 10−3 eV rather than 1028 eV for reasons that we do not yet understand. To date,
there are no compelling theoretical arguments that explain either why the fundamental quantum
vacuum energy might have this magnitude or why it might be zero.

The other basic puzzle concerning a cosmological constant is: Why now? The ratio of a constant
vacuum energy density to the matter density scales as a3(t), so it has changed by a factor of ∼ 1027

since big bang nucleosynthesis and by a factor ∼ 1042 since the electroweak symmetry breaking
epoch, which seems (based on our current understanding of physics) like the last opportunity for
a major rebalancing of matter and energy components. It therefore seems remarkably coincidental
for the vacuum energy density and the matter energy density to have the same order of magnitude
today. In the late 1970s, Robert Dicke used a similar line of reasoning to argue for a spatially
flat universe (?), an argument that provided much of the initial motivation for inflationary theory
(Guth, 1981). However, while the universe appears to be impressively close to spatial flatness, the
existence of two energy components with different a(t) scalings means that Dicke’s “coincidence
problem” is still with us.

One possible solution to the coincidence problem is anthropic: if the vacuum energy assumes
widely different values in different regions of the universe, then conscious observers will find them-

1Many of the relevant observational references will appear in subsequent sections on specific topics.
2This interpretation of the cosmological constant was first suggested in the late 1960s by ?; for further discussion

of the history see Peebles and Ratra (2003).
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selves in regions of the universe where the vacuum energy is low enough to allow structure formation
(Efstathiou, 1995; Martel et al., 1998). This type of explanation finds a natural home in “mul-
tiverse” models of eternal inflation, where different histories of spontaneous symmetry breaking
lead to different values of physical constants in each non-inflating “bubble” (Linde, 1987), and it
has gained new prominence in the context of string theory, which predicts a “landscape” of vacua
arising from different compactifications of spatial dimensions (Susskind, 2003). One can attempt
to derive an expectation value of the observed cosmological constant from such arguments (e.g.,
Martel et al. 1998), but the results are sensitive to the choice of parameters that are allowed to
vary (Tegmark and Rees, 1998) and to the choice of measure on parameter space, so it is hard to
take such “predictions” beyond a qualitative level. A variant on these ideas is that the effective
value (and perhaps even the sign) of the cosmological constant varies in time, and that structure
will form and observers arise during periods when its magnitude is anomalously low compared to
its natural (presumably Planck-level) energy scale (?Griest, 2002).

A straightforward alternative to a cosmological constant is a field with negative pressure (and
thus repulsive gravitational effect) whose energy density changes with time (Ratra and Peebles,
1988). In particular, a canonical scalar field φ with potential V (φ) has energy density and pressure

uφ = 1
2

1
~c3 φ̇2 + V (φ),

pφ = 1
2

1
~c3

φ̇2 − V (φ), (1)

so if the kinetic term is subdominant, then pφ ≈ −uφ. A slowly rolling scalar field of this sort is
analogous to the inflaton field hypothesized to drive inflation, but at an energy scale many, many
orders of magnitude lower. In general, a scalar field has an equation-of-state parameter

w ≡ p

u
(2)

that is greater than −1 and varies in time, while a true cosmological constant has w = −1 at all
times. Some forms of V (φ) allow attractor or “tracker” solutions in which the late-time evolution of
φ is insensitive to the initial conditions (Ratra and Peebles, 1988; Steinhardt et al., 1999), and some
allow uφ to track the matter energy density at early times, ameliorating the coincidence problem
(Skordis and Albrecht, 2002). Some choices give a nearly constant w that is different from −1, while
others have w ≈ −1 as an asymptotic state at either early or late times, referred to respectively as
“thawing” or “freezing” solutions (Caldwell and Linder, 2005).

Scalar field models in which the energy density is dominated by V (φ) are popularly known as
“quintessence” (?). A number of variations have been proposed in which the energy density of the
field is dominated by kinetic, spin, or oscillatory degrees of freedom (?). Other models introduce
non-canonical kinetic terms or couple the field to dark matter. In general different models differ in
the evolution of uφ(a) and w(a), and some have other distinctive features such as large scale energy
density fluctuations that can affect CMB anisotropies or the integrated Sachs-Wolfe effect.

The alternative to introducing a new energy component is to modify General Relativity itself
on cosmological scales, for example by replacing the Ricci scalar R in the gravitational action with
some higher order function f(R), or by allowing gravity to “leak” into an extra dimension in a way
that reduces its attractive effect at large scales (Dvali et al., 2000). GR modifications can alter
the relation between the expansion history and the growth of matter clustering, and, as discussed
in subsequent sections, searching for mismatches between observational probes of expansion and
observational probes of structure growth is one generic approach to seeking signatures of modified
gravity. To be consistent with tight constraints from solar system tests, modifications of gravity
must generally be “shielded” on small scales, by mechanisms such as the “chameleon” effect (?)
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or “Vainshtein screening” (?). These mechanisms can have the effect of introducing intermediate
scale forces. GR modifications can also alter the relation between non-relativistic matter clustering
and gravitational lensing, which in standard GR are controlled by two different potentials that are
equal to each other for fluids without anisotropic stress.

The distinction between a new energy component and a modification of gravity may be am-
biguous. The most obvious ambiguous case is the cosmological constant itself, which can be placed
on either the “curvature” side or the “stress-energy” side of the Einstein field equation. More
generally, many theories with f(R) modifications of the gravitational action can be written in a
mathematically equivalent form of GR plus a scalar field with specified properties. Relative to ex-
pectations for a cosmological constant or a simple scalar field model, models in which dark matter
decays into dark energy can produce a mismatch between the histories of expansion and structure
growth while maintaining GR. Thus, even perfect measurements of all relevant observables may not
uniquely locate the explanation of cosmic acceleration in the gravitational or stress-energy sector.

While the term “dark energy” seems to presuppose a stress-energy explanation, in practice it
has become a generic term for referring to the cosmic acceleration phenomenon. In particular,
the phrase “dark energy experiments” has come to mean observational studies aimed at measuring
acceleration and uncovering its cause, regardless of whether that cause is a new energy field or a
modification of gravity. We will generally adopt this common usage of “dark energy” in this review,
though where the distinction matters we will try to use “cosmic acceleration” as our generic term. It
is important to keep in mind that we presently have strong observational evidence for accelerated
cosmic expansion but no compelling evidence that the cause of this acceleration is really a new
energy component.

The magnitude and coincidence problems are challenges for any explanation of cosmic accel-
eration, whether a cosmological constant, a scalar field, or a modification of GR. The coincidence
problem seems like an important clue for identifying a correct solution, and some models at least
reduce its severity by coupling the matter and dark energy densities in some way. Multiverse
models with anthropic selection arguably offer a solution to the coincidence problem, because if the
probability distribution of vacuum energy densities rises swiftly towards high values, then structure
may generically form at a time when the matter and vacuum energy density values are similar, in
that small subset of universes where structure forms at all. But sometimes a coincidence is just
a coincidence. Essentially all current theories of cosmic acceleration have one or more adjustable
parameters whose value is tuned to give the observed level of acceleration, and none of them yield
this level as a “natural” expectation unless they have built it in ahead of time. These theories
are designed to explain acceleration itself rather than emerging from independent theoretical con-
siderations or experimental constraints. Conversely, a theory that provided a compelling account
of the observed magnitude of acceleration — like GR’s successful explanation of the precession of
Mercury — would quickly jump to the top of the list of cosmic acceleration models.

1.3. Looking Forward

The deep mystery and fundamental implications of cosmic acceleration have inpsired numerous
ambitious observational efforts to measure its history and, it is hoped, reveal its origin. The report of
the Dark Energy Task Force (DETF; Albrecht et al. 2006) played a critical role in systematizing the
field, by categorizing experimental approaches and providing a quantitative framework to compare
their capabilities. The DETF categorized then-ongoing experiments as “Stage II” (following the
“Stage I” discovery experiments) and the next generation as “Stage III,” and it looked forward to a
generation of more capable (and more expensive) “Stage IV” efforts that might begin observations
around the second half of the coming decade. The DETF focused on the same four methods that
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will be the primary focus of this review: Type Ia supernovae, baryon acoustic oscillations (BAO),
weak gravitational lensing, and clusters of galaxies.

Four years on, the main “Stage II” experiments have completed their observations though
not necessarily their final analyses. Prominent examples include the supernova and weak lensing
programs of the CFHT Legacy survey (?), the ESSENCE supernova survey (?), BAO measurements
from the Sloan Digital Sky Survey (SDSS; Eisenstein et al. 2005; Reid et al. 2010a), and the
SDSS-II supernova survey (Frieman et al., 2008b). These have been complemented by extensive
multi-wavelength studies of local and high-redshift supernovae such as the Carnegie Supernova
Project (Hamuy et al., 2006; Freedman et al., 2009), by systematic searches for z > 1 supernovae
with Hubble Space Telescope (Riess et al., 2007), by dark energy constraints from the evolution of
X-ray or optically selected clusters (Mantz et al., 2010; Vikhlinin et al., 2009; Rozo et al., 2010),
by improved measurements of the Hubble constant (Riess et al., 2009), and by CMB data from
the WMAP satellite (Bennett et al., 2003) and from ground-based experiments that probe smaller
angular scales. Most data remain consistent with a spatially flat universe and a cosmological
constant with ΩΛ = 1−Ωm ≈ 0.75, with an uncertainty in the equation-of-state parameter w that
is roughly ±0.1 at the 1 − 2σ level. Substantial further improvement will in many cases require
reduction in systematic errors as well as increased statistical power from larger data sets.

The clearest examples of “Stage III” experiments, now in the late construction or early op-
erations phase, are the Dark Energy Survey (DES), Pan-STARRS3, the Baryon Oscillation Spec-
troscopic Survey (BOSS) of SDSS-III, and the Hobby-Eberly Telescope Dark Energy Experiment
(HETDEX). All four projects are being carried out by international, multi-institutional collabora-
tions. Pan-STARRS and DES will both carry out large area, multi-band imaging surveys that go
a factor of ten or more deeper (in flux) than the SDSS imaging survey (Abazajian et al., 2009),
using, respectively, a 1.4-Gigapixel camera on the 1.8-m PS1 telescope on Haleakala in Hawaii and a
0.5-Gigapixel camera on the 4-m Blanco telescope on Cerro Tololo in Chile. These imaging surveys
will be used to measure structure growth via weak lensing, to identify galaxy clusters and calibrate
their masses via weak lensing, and to measure BAO in galaxy angular clustering using photometric
redshifts. Each project also plans to carry out monitoring surveys over smaller areas to discover
and measure thousands of Type Ia supernovae. Fully exploiting BAO requires spectroscopic red-
shifts, and BOSS will carry out a nearly cosmic-variance limited survey (over 104 deg2) out to
z ≈ 0.7 using a 1000-fiber spectrograph to measure redshifts of 1.5 million luminous galaxies, and a
pioneering quasar survey that will measure BAO at z ≈ 2.5 by using the Lyα forest along 150,000
quasar sightlines to trace the underlying matter distribution. HETDEX plans a BAO survey of 106

Lyα-emitting galaxies at z ≈ 3.
There are many other ambitious observational efforts that do not fit so neatly into the definition

of a “Stage III dark energy experiment” but will nonetheless play an important role in “Stage III”
constraints. A predecessor to BOSS, the WiggleZ project on the Anglo-Australian 3.9-m telescope,
is carrying out a spectroscopic survey of 240,000 emission line galaxies out to z = 1.0. The Hyper
Suprime-Cam on the Subaru telescope will have wide-area imaging capabilities comparable to DES
and Pan-STARRS, and it is likely to devote substantial fractions of its time to weak lensing surveys.
Other examples include intensive spectroscopic and photometric monitoring of supernova samples
aimed at calibration and understanding of systematics, new HST searches for z > 1 supernovae,
further improvements in H0 determination, deeper X-ray and weak lensing studies of samples of

3Pan-STARRS, the Panoramic Survey Telescope and Rapid Response System, is the acronym of the facility rather
than the project, but cosmological surveys are among its major goals. Pan-STARRS eventually hopes to use four
coordinated telescopes, but the surveys currently underway use the first of these telescopes, referred to as PS1.

7



tens or hundreds of galaxy clusters, and new cluster searches via the Sunyaev-Zel’dovich (Sunyaev
and Zeldovich, 1970) effect using the South Pole Telescope (SPT) or Atacama Cosmology Telescope
(ACT). In addition, Stage III analyses will draw on CMB constraints from the Planck satellite.

The Astro2010 report identifies cosmic acceleration as one of the most pressing questions in
contemporary astrophysics, and its highest priority recommendations for new ground-based and
space-based facilities both have cosmic acceleration as a primary science theme.4 On the ground,
the Large Synoptic Survey Telescope (LSST), a wide-field 8.4-m optical telescope equipped with
a 3.2-Gigapixel camera, would enable deep weak lensing and optical cluster surveys over much of
the sky, synoptic surveys that would detect and measure tens of thousands of supernovae, and
photometric-redshift BAO surveys extending to z ≈ 3. BigBOSS (?), highlighted as an initiative
that could be supported by the proposed “mid-scale innovation program,” would use a highly
multiplexed fiber spectrograph on the NOAO 4-m telescopes to carry out spectroscopic surveys of
∼ 108 galaxies to z ≈ 1.6 and Lyα forest BAO measurements at z > 2. Another potential ground-
based method for large volume BAO surveys is radio “intensity mapping,” which seeks to trace the
large scale distribution of neutral hydrogen without resolving the scale of individual galaxies. In
the longer run, the Square Kilometer Array (SKA) could enable a BAO survey of ∼ 109 HI-selected
galaxies and weak lensing measurements of ∼ 1010 star-forming galaxies using radio continuum
shapes.

Space observations offer two critical advantages for cosmic acceleration studies: stable high
resolution imaging over large areas, and vastly higher sensitivity at near-IR wavelengths. (For clus-
ter studies, space observations are also the only route to X-ray measurements.) These advantages
inspired the Supernova Acceleration Probe (SNAP; ?), initially designed with a concentration on
supernova measurements at 0.1 < z < 1.7, and later expanded to include a wide area weak lensing
survey as a major component. Following the National Research Council’s Quarks to Cosmos report
(?), NASA and the U.S. Department of Energy embarked on plans for a Joint Dark Energy Mission
(JDEM), which has considered a variety of mission architectures for space-based supernova, weak
lensing, and BAO surveys. The Astro2010 report endorsed as its highest priority space mission
a Wide-Field Infrared Space Telescope (WFIRST), which would carry out imaging and dispersive
prism spectroscopy in the near-IR to support all three methods. The suggested design of WFIRST,
a 1.5-m telescope with a large near-IR focal plane array, is like that of the JDEM-Omega proposal
(Gehrels, 2010), but the endorsed mission scope is considerably broader, including a planetary mi-
crolensing program and a guest observer program. On the European side, ESA has selected the
Euclid5 satellite as one of three “definition phase” medium-class missions for its Cosmic Vision
2015-2025 program, with the expectation that two of the three missions will be selected for flight.
Euclid would carry out optical and near-IR imaging and near-IR slitless spectroscopy over half the
sky, for weak lensing and BAO measurements. Given the funding hurdles and the organizational
and technical challenges that these projects face, it is not clear whether there will be two inde-
pendent missions, one mission (perhaps joint U.S.-European), or no mission at all. In any case,
well ahead of either of these potential missions, the European X-ray satellite eRosita is expected to
produce an all-sky catalog of ∼ 105 X-ray selected clusters, with X-ray temperature measurements

4We will use the term “Astro2010 report” to refer collectively to New Worlds, New Horizons and to the panel
reports that supported it. In particular, detailed discussion of these science themes and related facilities can be
found in the individual reports of the Cosmology and Fundamental Physics (CFP) Science Frontiers Panel and the
Electromagnetic Observations from Space (EOS), Optical and Infrared Astronomy from the Ground (OIR), and Radio,
Millimeter, and Sub-Millimeter Astronomy from the Ground (RMS) Program Prioritization Panels. Information on
all of these reports can be found at http://sites.nationalacademies.org/bpa/BPA 049810.

5Not an acronym.
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and resolved profiles for the brighter clusters.
The completion of the Astro2010 Decadal Survey and the Euclid selection by ESA make this an

opportune time to review the techniques and prospects for probing cosmic acceleration with ambi-
tious observational programs. Our goal is, in some sense, an update of the DETF report (Albrecht
et al., 2006), incorporating the many developments in the field over the last few years and (the
difference between a report and a review) emphasizing explanation rather than recommendation.
We aim to complement other reviews of the field that differ in focus or in level of detail. To mention
just a selection of these, we note that Frieman et al. (2008a) and Blanchard (2010) provide excellent
overviews of the field, covering theory, current observations, and future experiments, Peebles and
Ratra (2003) are especially good on history of the subject and on theoretical aspects of scalar field
models, and Jain and Khoury (2010) review modified gravity models, discussing theoretical and ob-
servational aspects in great depth. Carroll (2003) and Linder (2003b, 2007) provide accessible and
informative introductions at the less forbidding length of conference proceedings, and Linder (2010)
provides a review aimed at a general scientific audience. The distinctive features of the present
review are our in-depth discussion of individual observational methods and our new quantitative
forecasts for how combinations of these methods can constrain parameters of cosmic acceleration
theories.

To the extent that we have a consistent underlying theme, it is the importance of pursuing
a balanced observational program. We do not believe that all methods or all implementations of
methods are equal; some approaches have evident systematic limitations that will prevent them
reaching the sub-percent accuracy level that is needed to make major contributions to the field
over the next decade, while others would require prohibitively expensive investments to achieve the
needed statistical precision. However, for a given level of community investment, we think there is
more to be gained by doing a good job on the three or four most promising methods than by doing
a perfect job on one at the expense of the others. A balanced approach offers crucial cross-checks
against systematic errors, takes advantage of complementary information contained in different
observables or complementary strengths in different redshift ranges, and holds the best chance
of uncovering “surprises” that do not fit into the conventional categories of theoretical models.
This philosophy will emerge most clearly in §3, where we present our quantitative forecasts. For
understandable reasons, most articles and proposals (including some we have written ourselves)
start from current knowledge and show the impact of adding a particular new experiment. We will
instead start from a “fiducial program” that assumes ambitious but achievable advances in several
different methods at once, then consider the impact of strengthening, weakening, or omitting its
individual elements.

2. Observables, Parameterizations, and Methods

The two top-level questions about cosmic acceleration are:

1. Does acceleration arise from a breakdown of GR on cosmological scales or from a new energy
component that exerts repulsive gravity within GR?

2. If acceleration is caused by a new energy component, is its energy density constant in space
and time?

As already discussed in §1.2, the distinction between “modified gravity” and “new energy compo-
nent” solutions may not be unambiguous. However, the cosmological constant hypothesis makes
specific, testable predictions, and the combination of GR with relatively simple scalar field models
predicts testable consistency relations between expansion and structure growth.

9



The answer to these questions, or a major step towards an answer, could come from a surprising
direction: a theoretical breakthrough, a revealing discovery in accelerator experiments, a time-
variation of a fundamental “constant,” or an experimental failure of GR on terrestrial or solar
system scales (see §?? for brief discussion). However, “wait for a breakthrough” is an unsatisfying
recipe for scientific progress, and there is one clear path forward: measure the history of expansion
and the growth of structure with increasing precision over an increasing range of redshift and
lengthscale.

2.1. Basic Equations

In GR, the expansion of a homogeneous and isotropic universe is governed by the Friedmann
equation, which can be written in the form

H2(z)

H2
0

= Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + Ωφ
uφ(z)

uφ(z = 0)
. (3)

Here H(z) ≡ ȧ/a is the Hubble parameter and Ωm, Ωr, and Ωφ are the present day energy densities
of matter, radiation, and a generic form of dark energy φ.6 These are expressed as ratios to the
critical energy density required for flat space geometry

Ωx =
ux

ρcritc2
, ρcrit =

3H2
0

8πG
. (4)

At higher redshifts,

Ωm(z) ≡ ρm(z)

ρcrit(z)
= Ωm(1 + z)3

H2
0

H2(z)
, (5)

where the second equality follows from the scaling ρm(z) = ρm(z = 0) × (1 + z)3 and from the
definition of ρcrit(z). In the formulation (3), the impact of curvature on expansion is expressed like
that of a “dynamical” component with scaled energy density

Ωk ≡ 1 − Ωm − Ωr − Ωφ, (6)

with Ωk = 0 for a spatially flat universe.
As discussed in §??, BAO studies allow direct measurements of H(z), and redshift-space dis-

tortions (§??) can effectively measure H(z)/H0 by determining Ωm(z). In most cases, however,
observations constrain H(z) indirectly by measuring the distance-redshift relation or the history of
structure growth.

Hogg (1999) provides a compact and pedagogical summary of cosmological distance measures.
The comoving line-of-sight distance to an object at redshift z is

DC(z) =
c

H0

∫ z

0
dz′

H0

H(z′)
. (7)

Defining a dimensional (length−2) curvature parameter

K = −Ωk(c/H0)
−2 (8)

6We will refer to values of these parameters at z 6= 0 as Ωm(z), Ωφ(z), etc. When we assume a cosmological
constant, we will replace Ωφ by ΩΛ.
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allows us to write the comoving angular diameter distance,7 relating an object’s comoving size l to
its angular size θ, as

DA(z) = K−1/2 sin
(
K1/2DC

)
≈ DC

[
1 − 1

6
KD2

C

]
, (9)

which applies for either sign of Ωk and yields DA(z) = DC(z) for Ωk = 0.8 Note that positive
space curvature (Ωtot > 1) corresponds to negative Ωk (and positive K), hence a smaller DA and
larger angular size than in a flat universe. If uφ(z) > uφ(z = 0), then compared to a cosmological
constant model (uφ = uφ,0) with the same matter density and curvature, the Hubble parameter at
z > 0 is higher (eq. 3), and distances to redshifts z > 0 are lower (eq. 9).

The luminosity distance relating an object’s bolometric flux fbol to its bolometric luminosity
Lbol is

DL =
√

Lbol/4πfbol = DA × (1 + z) . (10)

The relation between luminosity and angular diameter distance is independent of cosmology, so the
two measures contain the same information about H(z) and Ωk. For this reason, we will sometimes
use D(z) to stand in generically for either of these transverse distance measures. Some methods
(e.g., counts of galaxy clusters) effectively probe the comoving volume element that relates solid
angle and redshift intervals to comoving volume VC . We will denote this quantity

dVC(z) ≡ cH−1(z)D2
A(z)dΩ dz. (11)

On large scales, the gravitational evolution of fluctuations in pressureless dark matter follows
linear perturbation theory, according to which

δ(x, t) ≡ ρm(x, t) − ρ̄m

ρ̄m
= δ(x, ti) ×

G(t)

G(ti)
, (12)

where the linear growth function G(t) obeys the differential equation

G̈GR + 2H(z)ĠGR − 3

2
ΩmH2

0 (1 + z)3GGR = 0 (13)

and the GR subscript denotes the fact that this equation applies in standard GR. The solution to
this equation can only be written in integral form for specific forms of H(z), and thus for specific
dark energy models specifying uφ(z). However, to a very good approximation the logarithmic
growth rate of linear perturbations in GR is

fGR(z) ≡ d ln GGR

d ln a
≈ [Ωm(z)]γ , (14)

where γ ≈ 0.55 − 0.6 depends only weakly on cosmological parameters Peebles (1980); Lightman
and Schechter (1990). Integrating this equation yields

GGR(z)

GGR(z = 0)
= exp

[
−

∫ z

0

dz′

1 + z′
[Ωm(z′)]γ

]
, (15)

7Note that Hogg 1999 refers to this quantity as the comoving transverse distance and uses DA to denote the
quantity relating physical size to angular size.

8Recall that sin(ix) = i sinh(x).
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where Ωm(z) is given by equation (5). Linder (2005) shows that equation (15) is accurate to better
than 0.5% for a wide variety of dark energy models if one adopts

γ = 0.55 + 0.05[1 + w(z = 1)] (16)

(see also Wang and Steinhardt 1998; Weinberg 2005; Amendola et al. 2005). While the full solution
of equation (13) should be used for high accuracy calculations, equation (15) is useful for intuition
and for approximate calculations. Note in particular that if uφ(z) > uφ,0 then, relative to a
cosmological constant model, Ωm(z) ∝ H−2(z) is lower (eq. 5), so GGR(z)/GGR(z = 0) is higher —
i.e., there has been less growth of structure between redshift z and the present day because matter
has been a smaller fraction of the total density over that time. It is often useful to refer the growth
factor not to its z = 0 value but to the value at some high redshift when, in typical models, dark
energy is dynamically negligible and Ωm(z) ≈ 1. We will frequently use z = 9 as a reference epoch,
in which case equation (15) becomes

GGR(z)

GGR(z = 9)
= exp

[∫ 9

z

dz′

1 + z′
[Ωm(z′)]γ

]
. (17)

In principle the age of the universe,

t(z) =

∫ ∞

z

dz′

1 + z′
H−1(z′) , (18)

is an observable that can probe the expansion history. The conflict between the ages of globular
clusters and the value of t0 in a decelerating universe is one of the significant arguments for cosmic
acceleration, and some authors have employed ages of high-redshift galaxies as a constraint on
dark energy models (e.g., ?). However, we think that the systematic uncertainties in ages inferred
from population synthesis will inevitably be too large to allow the percent-level measurements that
are needed to make interesting further contributions to the field. Jimenez and Loeb (2002) have
proposed using differential ages of galaxies at different redshifts to measure, in effect, H(z). While
this approach removes some of the uncertainties in the population synthesis models, it relies on
identifying a population of galaxies at one redshift that is just an aged version of a population at
a higher redshift, and it not clear that one can do this convincingly enough that one would believe
a “surprising” dark energy result from this method.

2.2. Model Parameterizations

The properties of dark energy influence the observables — H(z), D(z), and G(z) — through
the history of uφ(z)/uφ,0 in the Friedmann equation (3). This history is usually framed in terms of
the value and evolution of the equation-of-state parameter w(z) = pφ(z)/uφ(z). Provided that the
field φ is not transferring energy directly to or from other components (e.g., by decaying into dark
matter), the first law of thermodynamics for a comoving volume implies

dUφ = d(uφa3) = −pφdV = −pφd(a3) (19)

=⇒ a3duφ + 3uφa2da = −3w(z)uφa2da (20)

=⇒ d ln uφ = −3[1 + w(z)]d ln a = 3[1 + w(z)]d ln(1 + z) , (21)

where the last equality uses the definition a = (1 + z)−1. Integrating both sides implies

uφ(z)

uφ(z = 0)
= exp

[
3

∫ z

0
[1 + w(z′)]

dz′

1 + z′

]
. (22)
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For a constant w independent of z we find

uφ(z)

uφ(z = 0)
= (1 + z)3(1+w), (23)

which yields the familiar results u ∝ (1 + z)3 for pressureless matter and u ∝ (1 + z)4 for radiation
(w = +1

3), and which shows once again that a cosmological constant uφ(z) = constant corresponds
to w = −1.

The first obvious way to parameterize w(z) is with a Taylor expansion w(z) = w0 + w′z + ...,
but this expansion becomes ill-behaved at high z. A more useful two-parameter model, introduced
by Linder (2003a), is

w(a) = w0 + wa(1 − a), (24)

in which the value of w evolves linearly from w0 + wa at small a (high z) to w0 at z = 0. Ob-
servations usually provide the best constraint on w at some intermediate redshift, not at z = 0,
so statistical errors on w0 and wa are highly correlated. This problem can be circumvented by
recasting equation (24) in the equivalent form

w(a) = wp + wa(ap − a) (25)

and choosing the “pivot” expansion factor ap so that the observational errors on wp and wa are
uncorrelated (or at least weakly so). The value of ap depends on what data sets are being considered,
but in practice it is usually close to zp = a−1

p − 1 ≈ 0.4 − 0.5 (see Table 5). The best-fit wp is,
approximately, the parameter of the constant-w model that would best reproduce the data. A
cosmological constant would be statistically ruled out either if wp were inconsistent with −1 or if
wa were inconsistent with zero. In practice, error bars on wa are generally much larger than error
bars on wp, by a factor of 5 − 10.

An alternative approach is to approximate w(z) as a stepwise-constant function defined by its
values in a number of discrete bins, perhaps with priors or constraints on the allowed values (e.g.,
−1 ≤ w(z) ≤ 1). For a given set of observations, this function can then be decomposed into
orthogonal principal components (PCs), with the first PC being the one that is best constrained
by the data, the second PC the next best constrained, and so forth. Variants of this approach have
been widely adopted in recent investigations (e.g., ?), including the report of the JDEM Figure-
of-Merit Science Working Group (Albrecht et al., 2009). The PCA approach has the advantage
of allowing quite general w(z) histories to be represented, though in practice only a few PCs can
be constrained well, and ? have argued that the (wp, wa) parameterization has equal power for
practical purposes. We will use both characterizations for our forecasts in §3.

Our equations so far have assumed that GR is correct. The alternative to dark energy is to
modify GR in a way that produces accelerated expansion. One of the best-studied examples is
DGP gravity (Dvali et al., 2000), which posits a five-dimensional gravitational field equation that
leads to a Friedmann equation

H2(z) =
8πG

3
ρ(z) ± H

crc
(26)

for a spatially flat, homogeneous universe confined to a 3 + 1-dimensional brane. Choosing the
positive sign for the second term leads to an initially decelerating universe that transitions to
accelerating, and ultimately exponential, expansion. Other modifications to the gravitational action
will modify the Friedmann equation in different ways. Alternatively, one can simply postulate a
modified Friedmann equation without specifying a complete gravitational theory, e.g., by replacing
ρ on the r.h.s. of H2 ∝ ρ with a parameterized function H2 ∝ g(ρ) (Freese and Lewis, 2002;
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Freese, 2005). Of course, there is no guarantee that such a function can in fact be derived from a
self-consistent gravitational theory.

In addition to changing the Friedmann equation, a modified gravity model may alter the equa-
tion (13) that relates the growth of structure to the expansion history H(z). Therefore, one general
approach to testing modified gravity explanations is to search for inconsistency between observ-
ables that probe H(z) or D(z) and observables that also probe the growth function G(z). Some
methods effectively measure G(z)/G(z = 0), others measure G(z) relative to an amplitude an-
chored in the CMB, and others measure the logarithmic growth index γ of equation (14). For
“generic” parameters that describe departures from GR-predicted growth, we will use a parameter
G9 that characterizes an overall multiplicative offset of the growth factor and a parameter ∆γ that
characterizes a change in the fluctuation growth rate. We define these parameters in §2.4 below,
following our review of CMB anisotropy and large scale structure. It is also possible that modified
gravity will cause G(z) to be scale-dependent (see §??), or that it will alter the relation between
gravitational lensing and the projected mass surface density (see §??), or that it will reveal its
presence through a high-precision test on solar system or terrestrial scales (see §??).

The above considerations lead to the following general strategy for probing the physics of cos-
mic acceleration: use observations to constrain the functions H(z), D(z), and G(z), and use these
constraints in turn to constrain the history of w(z) for dark energy models and to test for inconsis-
tencies that could point to a modified gravity explanation. For pure H(z) and D(z) measurements,
the “nuisance parameters” in such a strategy are the values of Ωm and Ωk, in addition to parame-
ters related directly to the observational method itself (e.g., the absolute luminosity of supernovae).
Assuming a standard radiation content, the value of Ωφ = 1−Ωm−Ωr−Ωk is fixed once Ωm and Ωk

are known. The effects of Ωm and Ωk are separable both from their different redshift dependence in
the Friedmann equation (3) and from the influence of Ωk on transverse distances (eq. 9) via space
curvature.

2.3. CMB Anisotropies and Large Scale Structure

CMB anisotropies have little direct constraining power on dark energy, but they play a critical
role in cosmic acceleration studies because they often provide the strongest constraints on “nui-
sance parameters” such as Ωm, Ωk, and the high-redshift normalization of matter fluctuations.
In particular, the amplitudes of the acoustic peaks in the CMB angular power spectrum depend
sensitively (and differently) on the matter and baryon densities, and the locations of the peaks
depend sensitively on spatial curvature. Using CMB constraints necessarily brings in additional
nuisance parameters such as the spectral index ns and curvature dns/d ln k of the scalar fluctuation
spectrum, the amplitude and slope of the tensor (gravitational wave) fluctuation spectrum, the
post-recombination optical depth τ , and the Hubble constant

h ≡ H0/100 km s−1 Mpc−1. (27)

However, some of these parameters are themselves relevant to cosmic acceleration studies, and
current CMB measurements yield tight constraints even after marginalizing over many parameters
(e.g., Komatsu et al. 2011). The strength of these constraints depends significantly on the adopted
parameter space — for example, current CMB data provide tight constraints on h if one assumes a
flat universe with a cosmological constant, but these constraints are much weaker if Ωk and w are
free parameters.

CMB data are usually incorporated into dark energy constraints, or forecasts, by adding priors
on parameters that are then marginalized over in the analysis. We will adopt this strategy in
§3, using the level of precision forecast for the Planck satellite (?). However, it is worth noting
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some rules of thumb. For practical purposes, Planck data will give near-perfect determinations of
Ωmh2 and Ωbh

2 from the heights of the acoustic peaks, where the h2 dependence arises because
it is the physical density that affects the acoustic features, not the density relative to the critical
density. “Near-perfect” means that marginalizing over the expected uncertainties in Ωmh2 and
Ωbh

2 adds little to the error bars on dark energy parameters even from ambitious “Stage IV”
experiments, relative to assuming that they are known perfectly.9 Planck data will also give near-
perfect determinations of the sound horizon s∗ at recombination, which determines the physical scale
of the acoustic peaks in the CMB and the scale of BAO in large scale structure. Since the angular
scale of the acoustic peaks is precisely measured, Planck data should also yield a near-perfect
determination of the angular diameter distance to the redshift of recombination, D∗ ≡ DA(z∗).
Finally, the amplitude of CMB anisotropies gives a near-perfect determination (after marginalizing
over the optical depth τ , which is constrained by polarization data) of the amplitude of matter
fluctuations at zrec, and thus throughout the era in which dark energy (or deviation from GR) is
negligible. As emphasized by Hu (2005; an excellent source for more detailed discussion of CMB
anisotropies in the context of dark energy constraints), these determinations all depend on the
assumptions of a standard thermal and recombination history, but the CMB data themselves allow
tests of these assumptions at the required level of accuracy. CMB data also allow tests of cosmic
acceleration models via the integrated Sachs-Wolfe (ISW) effect, which we discuss briefly in §??.

If primordial matter fluctuations are Gaussian, as predicted by simple inflation models and
supported by most observational investigations to date, then their statistical properties are fully
specified by the power spectrum P (k) or its Fourier transform, the two-point correlation function
ξ(r). Defining the Fourier transform of the density contrast10

δ̃(k) =

∫
d3re−ik·rδ(r), δ(r) = (2π)−3

∫
d3keik·rδ̃(k), (28)

the power spectrum is defined by

〈δ̃(k)δ̃(k′)〉 = (2π)3P (k)δ3
D(k − k′), (29)

where δ3
D is a 3-d Dirac-delta function and isotropy guarantees that P (k) is a function of k = |k|

alone. The power spectrum has units of volume, and it is often more intuitive to discuss the
dimensionless quantity

∆2(k) ≡ (2π)−3 × 4πk3P (k) =
dσ2

d ln k
, (30)

which is the contribution to the variance σ2 ≡ 〈δ2〉 of the density contrast per logarithmic interval
of k. The variance of the density field smoothed with a window WR(r) of scale R is

σ2(R) =

∫ ∞

0

dk

k
∆2(k)W̃ 2

R(k), (31)

where the Fourier transform of a top-hat window, WR(r) = (4πR3/3)−1Θ(1 − r/R), is

W̃R(k) =
3

k3R3
[sin(kR) − kR cos(kR)] , (32)

9However, the effects of Planck-level CMB uncertainties are not completely negligible. For the fiducial Stage IV
program discussed in §3, fixing Ωmh2 and Ωbh

2 instead of marginalizing increases the DETF Figure of Merit from
533 to ∼ 700.

10A variety of Fourier conventions float around the cosmology literature. Here we adopt the same Fourier conven-
tions and definitions as Dodelson (2003).
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and the Fourier transform of a Gaussian window, WR(r) = (2π)−3/2R−3e−r2/2R2
, is

W̃R(k) = e−k2R2/2. (33)

The correlation function is

ξ(r) ≡ 〈δ(x)δ(x + r)〉 =

∫ ∞

0

dk

k
∆2(k)

sin(kr)

kr
. (34)

In linear perturbation theory, the power spectrum amplitude is proportional to G2(z), and we
will take Plin(k) to refer to the z = 0 normalization when the redshift is not otherwise specified:

Plin(k, z) =
G2(z)

G2(z = 0)
Plin(k). (35)

We discuss the normalization of G(z) and Plin(k) more precisely in §2.4 below. The evolution of
P (k) remains close to linear theory for scales k ≪ knl, where

∫ knl

0

dk

k
∆2(k) = 1. (36)

For realistic power spectra, non-linear evolution on small scales does not feed back to alter the
linear evolution on large scales. However, the shape of the power spectrum does change on scales
approaching knl, in ways that can be calculated using N-body simulations (Heitmann et al., 2010)
or several variants of cosmological perturbation theory (Carlson et al. 2009 and references therein).
Non-linear evolution is a significant effect for weak lensing predictions and for the evolution of
BAO, as we discuss in the corresponding sections below.

While there are many ways of characterizing the matter distribution in the non-linear regime,
the two measures that matter the most for our purposes are the mass function and clustering
bias of dark matter halos. There are several different algorithms for identifying halos in N-body
simulations, all of them designed to pick out collapsed, gravitationally bound dark matter structures
in approximate virial equilibrium. It is convenient to express the halo mass function in the form

dn

d ln M
= f(σ)ρ̄m

d ln σ−1

dM
, (37)

where σ2 is the variance of the linear density field smoothed with a top-hat filter of mass scale
M = 4

3πR3ρ̄m (eqs. 31 and 32). To a first approximation, the function f(σ) is universal, and the
effects of power spectrum shape, redshift (and thus power spectrum amplitude), and background
cosmological model (e.g., Ωm and ΩΛ) enter only through determining d ln σ−1/dM and ρ̄m. The
state-of-the-art numerical investigation is that of Tinker et al. (2008), who fit a large number of
N-body simulation results with the functional form

f(σ) = A

[(σ

b

)−a
+ 1

]
e−c/σ2

, (38)

finding best-fit values A = 0.186, a = 1.47, b = 2.57, c = 1.19 for z = 0 halos, defined to be
spherical regions centered on density peaks enclosing a mean interior overdensity of 200 times the
cosmic mean density ρ̄m. (Different halo mass definitions lead to different coefficients.) A similar
functional form was justified on analytic grounds by Sheth and Tormen (1999), following a chain
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of argument that ultimately traces back to Press and Schechter (1974) and Bond et al. (1991).
Discussions of the halo population frequently refer to the characteristic mass scale M∗, defined by

σ(M∗) = δc = 1.686, (39)

which sets the location of the exponential cutoff in the Press-Schechter mass function. Here δc is
the linear theory overdensity at which a spherically symmetric perturbation would collapse.11

In detail, Tinker et al. (2008) find that f(σ) depends on redshift at the 10-20% level, probably
because of the dependence of halo mass profiles on Ωm(z). At overdensities of ∼ 200, the baryon
fraction in group and cluster mass halos (M > 1013M⊙) is expected to be close to the cosmic
mean ratio Ωb/Ωm, but in detail gas pressure, dissipation, and feedback from star formation and
AGN can alter this fraction and change baryon density profiles relative to dark matter profiles. We
discuss these issues further in §??.

Massive halos are more strongly clustered than the underlying matter distribution because they
form near high peaks of the initial density field, which arise more frequently in regions where the
background density is high (Kaiser, 1984; Bardeen et al., 1986). On large scales, the correlation
function of halos of mass M is a scale-independent multiple of the matter correlation function
ξhh(r) = b2

h(M)ξmm(r). The halo-mass cross-correlation in this regime is ξhm(r) = bh(M)ξmm(r),
and similar scalings (b2

h and bh) hold for the halo power spectrum and halo-mass cross spectrum at
low k. Analytic arguments suggest a bias factor (Cole and Kaiser, 1989; Mo and White, 1996)

bh(M) = 1 +
[σ(M)/δc]

2 − 1

δc
. (40)

There have been numerous refinements to this formula based on analytic models and numerical
calibrations. The state-of-the-art numerical study is that of Tinker et al. (2010).

Galaxies reside in dark matter halos, and they, too, are biased tracers of the underlying matter
distribution. Here one must allow for the fact that different kinds of galaxies reside in different
mass halos and that massive halos host multiple galaxies. More massive or more luminous galaxies
are more strongly clustered because they reside in more massive halos that have higher bh(M). At
low redshift, the large scale bias factor is bg ≤ 1 for galaxies below the characteristic cutoff L∗ of
the Schechter (1976) luminosity function, but it rises sharply at higher luminosities (Norberg et al.,
2001; Zehavi et al., 2005, 2010).

For a galaxy sample defined by a threshold in optical or near-IR luminosity (or stellar mass),
theoretical models and empirical studies (too numerous to list comprehensively, but our summary
here is especially influenced by Kravtsov et al. 2004; Conroy et al. 2006; Zehavi et al. 2010) suggest
the following approximate model. The minimum host halo mass is the one for which the comoving
space density n(Mmin) of halos above Mmin matches the space density n(L) of galaxies above the
luminosity threshold. Each halo above Mmin hosts one central galaxy, and in addition each such
halo hosts a mean number of satellite galaxies 〈Nsat〉 = (M − Mmin)/15Mmin, with the actual
number of satellites drawn from a Poisson distribution with this mean.12 The large scale galaxy
bias factor bg is the average bias factor bh(M) of halos above Mmin, with the average weighted by

11See Gunn and Gott (1972), but note that their argument must be corrected to growing mode initial conditions, as
is done in standard textbook treatments. The value δc = 1.686 is derived for Ωm = 1, but the cosmology dependence
is weak.

12To make the model more accurate, one should adjust Mmin iteratively so that the total space density of galaxies,
central+satellite, matches the observed n(L), but this is usually a modest correction because the typical fraction of
galaxies that are satellites is 5 − 20%.
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the product of the halo space density and the average number of galaxies per halo. In addition to
increasing bg by giving more weight to high mass halos, satellite galaxies contribute to clustering
on small scales, where pairs or groups of galaxies reside in a single halo (Seljak, 2000; Scoccimarro
et al., 2001; Berlind and Weinberg, 2002). In detail, at high luminosities one must allow for scatter
between galaxy luminosity and halo mass, which reduces the bias below that of the sharp threshold
model described above. Furthermore, selecting galaxies by color or spectral type alters the relative
fractions of central and satellite galaxies; redder, more passive galaxies are more strongly clustered
because a larger fraction of them are satellites, and the reverse holds for bluer galaxies with active
star formation.

On large scales, where b2
g∆

2
lin(k, z) ≪ 1, the galaxy power spectrum should have the same

shape as the linear matter power spectrum, Pgg(k, z) = b2
gPlin(k, z). However, scale-dependence of

bias at the 10-20% level can persist to quite low k, especially for luminous, highly biased galaxy
populations (Yoo et al., 2009). Combinations of CMB power spectrum measurements with galaxy
power spectrum measurements can yield tighter cosmological parameter constraints than either one
in isolation (e.g., Cole et al. (2005); Reid et al. (2010b)). In particular, this combination provides
greater leverage on the Hubble constant h, since CMB-constrained models predict galaxy clustering
in Mpc while galaxy redshift surveys measure distances in h−1 Mpc (or, equivalently, in km s−1).

Another complicating factor in galaxy clustering measurements is redshift-space distortion
(Kaiser 1987; see Hamilton (1997) for a comprehensive review), which arises because galaxy red-
shifts measure a combination of distance and peculiar velocity rather than true distance. On small
scales, velocity dispersions in collapsed objects stretch structures along the line of sight. On large
scales, coherent inflow to overdense regions compresses them in the line-of-sight direction, and
coherent outflow from underdense regions stretches them along the line of sight. In linear pertur-
bation theory, the divergence of the peculiar velocity field is related to the density contrast field
by

~∇ · v(x, z) = −(1 + z)−1H(z)
d ln G

d ln a
δ(x, z) ≈ −(1 + z)−1H(z)[Ωm(z)]γδ(x, z). (41)

The galaxy redshift-space power spectrum in linear theory is anisotropic, depending on the angle
θ between the wavevector k and the observer’s line of sight as

Pg(k, µ) = b2
g(1 + βµ2)2P (k), (42)

where P (k) is the real-space matter power spectrum, µ ≡ cos θ, and

β ≡ 1

bg

d ln G

d ln a
≈ Ωγ

m

bg
. (43)

A variety of non-linear effects, most notably the small scale dispersion and its correlation with large
scale density, mean that equation (42) is rarely an adequate approximation in practice, even on
quite large scales (Cole et al., 1994; Scoccimarro, 2004). In the galaxy correlation function, one
can remove the effects of redshift-space distortion straightforwardly by projection, counting galaxy
pairs as a function of projected separation rather than 3-d redshift-space separation. For the power
spectrum, one can correct for redshift-space distortion, but the analysis is more model-dependent
(see, e.g., Tegmark et al. 2004). However, redshift-space distortion can be an asset as well as a
nuisance, since it provides a route to measuring d ln G/d ln a. We will discuss this idea in §?? below.

2.4. Parameter Dependences and CMB Constraints

Figure 1 illustrates the four statistics discussed above, the CMB angular power spectrum, the
matter variance ∆2(k) computed from the linear theory power spectrum at z = 0, the z = 0
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Figure 1 CMB angular power spectrum (upper left), variance of matter fluctuations (upper right),
halo mass function (lower left), and halo bias factor (lower right). Solid curves in the main panels
show predictions of the fiducial ΛCDM panel listed in Table 1. Curves in the lower panels show
the fractional changes in these statistics induced by changing 1 + w to ±0.1 or Ωk to ±0.01 (see
legend). For each parameter change, we keep Ωmh2, Ωbh

2, and D∗ fixed by adjusting Ωm, Ωb, and
h (see Table 1). These compensating changes keep deviations in the CMB spectrum minimal, much
smaller than the cosmic variance errors indicated by the shaded region.
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Table 1. Fiducial Model and Simple Variants

w Ωk Ωc Ωb Ωφ h σ8

−1.0 0.00 0.222 0.045 0.733 0.710 0.806

−0.9 0.00 0.246 0.050 0.704 0.675 0.774
−1.1 0.00 0.201 0.041 0.758 0.746 0.837
−1.0 0.01 0.186 0.038 0.766 0.776 0.809
−1.0 −0.01 0.256 0.052 0.702 0.661 0.802

Note. — All models have ns = 0.963, τ = 0.088, As(k =
0.002Mpc−1) = 2.43 × 10−9.

halo mass function computed from equations (37) and (38), and the halo bias factor computed
from equation (6) of Tinker et al. (2010) for overdensity 200 halos (relative to the mean matter
density). Curves in the main panels show a fiducial model with the likelihood-weighted mean
parameters for the seven-year WMAP CMB measurements (Larson et al., 2011) assuming a flat
universe with a cosmological constant: Ωc = 0.222, Ωb = 0.045, ΩΛ = 0.733, h = 0.71, ns = 0.963,
As(k = 0.002Mpc−1) = 2.43 × 10−9, and post-recombination optical depth τ = 0.088. (These
parameters also assume no tensor fluctuations and dns/d ln k = 0.) The CMB power spectrum
shows the familiar pattern of acoustic peaks, with the angular scale of the first peak corresponding to
the sound horizon at recombination divided by the angular diameter distance to the last scattering
surface. The matter variance ∆2(k) shows a slow change of slope starting at k ≈ 0.02hMpc−1,
corresponding to the horizon scale at matter-radiation equality, and low amplitude wiggles at
smaller scales produced by BAO. The halo mass function has an approximate power-law form at
low masses changing slowly to an exponential cutoff for M ≫ M∗ = 3 × 1012h−1 M⊙. The bh(M)
relation is roughly flat for M . 5M∗ before rising steeply at higher masses. The h-dependences used
for k, dn/d ln M , and M reflect the dependences that typically arise when distances are estimated
from redshifts and thus scale as h−1.

In the lower panels, we show the fractional change in these statistics that arises when changing
1+w from 0 to ±0.1 and when changing Ωk from 0 to ±0.01. With any parameter variation, there
is the crucial question of what one holds fixed. For this figure, we have held fixed the parameter
combinations that have the strongest impact on the CMB power spectrum: Ωmh2 and Ωbh

2, which
determine the heights of the acoustic peaks and the physical scale of the sound horizon, and
D∗ = DA(zrec), which maps the physical scale of the peaks into the angular scale. We satisfy these
constraints by allowing h and Ωm to vary, maintaining Ωk = 0 for the w-variations and w = −1 for
the Ωk-variations, with ns, As, and τ fixed to the fiducial model values. The parameter values for
these variant models appear in Table 1.

From the CMB panel, we can see that the changes in the angular power spectrum induced by
these parameter variations are small compared to the cosmic variance error at every l, since we
have fixed the parameter combinations that mostly determine the CMB spectrum. The changes
are coherent, of course, but even considering model fits to the entire CMB spectrum the w changes
would be undetectable at the level of errors forecast for Planck, while the Ωk = ±0.01 models would
be distinguishable from the fiducial model at about 1.5σ. The impact of these parameter changes
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must instead be sought in other statistics at much lower redshifts. Changes to the matter variance
are ∼ 5% at small scales, growing to ∼ 20% at large scales, with oscillations that reflect the shift
in the BAO scale. Fractional changes to the halo space density at fixed mass can be much larger,
especially at high masses where the abundance is exponentially rare. We caution, however, that
the fractional change in mass at fixed abundance is much smaller, a point that we emphasize in
§??. The impact of a change in w reverses sign at M ≈ 6× 1014h−1 M⊙ ≈ 200M∗, where the mass
function begins to drop sharply. Changes in bias factor at fixed mass are ∼ 5% at high masses and
smaller at low masses.

Figure 2 shows the redshift evolution and parameter sensitivity of the Hubble parameter (eq. 3)
and the angular diameter distance (eq. 9), for the same fiducial model and parameter variations
used in Figure 1. The upper panels show H(z) and DA(z) in absolute units, while the lower
panels plot the combinations H(z)/h and hDA(z). BAO studies measure in absolute units, but
supernova studies effectively measure hDA(z) because they are calibrated in the local Hubble flow.
Equivalently, supernova distances are in h−1 Mpc rather than Mpc. Weak lensing predictions
depend on distance ratios rather than absolute distances, so in practice they also constrain hDA(z)
rather than absolute DA(z).

In absolute units, model predictions diverge most strongly at z = 0, and the impact of Ωk =
±0.01 is larger than the impact of 1+w = ±0.1. The impact of the w change on H(z) reverses sign
at z ≈ 0.6, a consequence of our CMB normalization. Changing w to −0.9 would on its own reduce
the distance to z∗, and H0 must therefore be lowered to keep D∗ fixed. However, with Ωmh2 fixed,
lower H0 implies a higher Ωm, which raises the ratio H(z)/H0, and at high redshift this effect wins
out over the lower H0. At z > 2, D(z) remains sensitive to Ωk but is insensitive to w, while the
sensitivity of H(z) to w is roughly flat for 1 < z < 3. In h−1 Mpc units, models converge at z = 0
by definition, and the impact of 1 + w = ±0.1 is generally larger than the impact of Ωk = ±0.01.
The sensitivity of hD(z) to parameter changes increases monotonically with increasing redshift,
growing rapidly until z = 0.5 and flattening beyond z = 1.

For structure growth, the issues of normalization are more subtle. The normalization of the
matter power spectrum is known better from CMB anisotropy at zrec than it is from local mea-
surements at z = 0, and this will be still more true in the Planck era. It therefore makes sense
to anchor the normalization in the CMB, even though the value at z = 0 then depends on cos-
mological parameters. Figure 3 plots (1 + z)GGR(z), where GGR(z) obeys equation (13) and is
normalized to to unity at z = 9. In most models, dark energy is dynamically negligible at z > 9,
making the growth from the CMB era up to that epoch independent of dark energy. In an Ωm = 1
universe, GGR(z) ∝ (1+z)−1, so the plotted ratio falls below unity when Ωm(z) starts to fall below
one. For Ωk = 0.01, Ωm(z) is below that in our fiducial model (see eqs. 3 and 5) both because
of the Ωk term in the Friedmann equation and because we lower Ωm(z = 0) from 0.27 to 0.22 to
keep D∗ fixed, thus depressing GGR(z) increasingly towards lower z. For w = −0.9, however, the
depression of Ωm(z)/Ωm(z = 0) from the Friedmann equation is countered by the higher value of
Ωm(z = 0) = 0.30 adopted to fix D∗, so the depression of GGR(z) is smaller, and it actually recovers
towards the fiducial value as z approaches zero.

In practice, observations do not probe the growth factor itself but the amplitude of matter
clustering, and in this case we must also account for the changing relation between the CMB power
spectrum and the matter clustering normalization. The left panel of Figure 4 plots σ8(z)× (1 + z),
where σ8(z) is the rms linear theory density contrast in a sphere of comoving radius 8h−1 Mpc
(eqs. 31 and 32). The right panel instead plots σ11,abs(z)× (1 + z), where σ11,abs refers to a sphere
of radius 11 Mpc (not h−1 Mpc). At high redshift these curves go flat as Ωm(z) approaches one
and the growth rate approaches G(z) ∝ (1 + z)−1. In the CMB-matched models considered here,
the impact of w or Ωk changes is complex, since changing these parameters alters the best-fit values
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Figure 2 Evolution of the Hubble parameter (left) and the comoving angular diameter distance
(right) for the fiducial ΛCDM model and for the variant models shown in Figure 1. Upper panels
are in absolute units, relevant for BAO, while lower panels show distances in h−1 Gpc, relevant for
supernovae or weak lensing.
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Figure 3 Evolution of the linear growth factor for the models shown in Figure 2, assuming GR. The
scaling in the upper panel removes the (1 + z) evolution that would arise in an Ωm = 1 universe
and normalizes GGR(z) to one at z = 9.
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Figure 4 Evolution of the matter fluctuation amplitude for the models shown in Figure 3, char-
acterized by the rms linear fluctuation in comoving spheres of radius 8h−1 Mpc (left) or 11 Mpc
(right). All models are normalized to the WMAP7 CMB fluctuation amplitude.

of Ωm and h as well as changing the growth factor directly through equation (15). The values of
σ8(z) change by 4− 5% at all z for 1 + w = ±0.1, but thse changes mostly track the changes in h.
In absolute units, σ11,abs(z), the changes are . 1%. For Ωk = ±0.01, σ8(z) changes by 4-5% at high
z but converges nearly to the fiducial value at z = 0, while σ11,abs(z) shows only 1% differences at
high z but diverges at low z.

All of these models have the WMAP7 (Larson et al., 2011) normalization of the power spectrum
of inflationary fluctuations, As = 2.43×10−9 at comoving scale k = 0.002Mpc−1 at z = zrec = 1089.
The primary uncertainty in this normalization is the degeneracy with the electron optical depth τ ,
since late-time scattering suppresses the amplitude of the primary CMB anisotropies by a factor
e−τ on the scales that determine the normalization. The WMAP7 constraints are τ = 0.088±0.015
(1σ), so the associated uncertainty in the matter fluctuation amplitude is 1.5%. (Recall that the
power spectrum amplitude is ∝ σ2

8 , so its fractional error is a factor of two larger.) For Planck, the
forecast uncertainty in τ is 0.005 if reionization is nearly instantaneous, making a 0.5% uncertainty
in matter fluctuation amplitude once other cosmological parameters, including w(z), are specified.
This uncertainty is small but not negligible compared to anticipated constraints on the low redshift
matter fluctuation amplitude from future weak lensing measurements.

Following Albrecht et al. (2009), we parameterize departures from the GR growth rate by a
change ∆γ of the growth index (eq. 14) and by an overall amplitude shift G9 that is the ratio of
the matter fluctuation amplitude at z = 9 to the value that would be predicted by GR given the
same cosmological parameters and w(z) history.13 Some caution is required in defining ∆γ, since
equations (14)-(16) are not exact, and their inaccuracies should not be defined as failures of GR!
For precise calculations, therefore, we adopt the Albrecht et al. (2009) expressions for growth factor

13Albrecht et al. (2009) denote this quantity G0 instead of G9.
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evolution:

f(z) = fGR(z) (1 + ∆γ ln Ωm(z)) (44)

G(z) = G9 × GGR(z) × exp

[
∆γ

∫ 9

z

dz′

1 + z′
fGR(z′) ln Ωm(z′)

]
, (45)

where GGR(z) and fGR(z) follow the (exact) solution to equation (13).
For practical purposes, one can use our definition of growth parameters to calculate the nor-

malized linear theory matter power spectrum at redshift z, given an assumed set of cosmological
parameter values and a w(z) history, as follows. First, use CAMB (Lewis et al., 2000) or some sim-
ilar program to compute the normalized linear matter power spectrum at z = 9. Then multiply the
power spectrum by G2(z)/G2

GR(z = 9), with G(z) given by equation (45) and GGR(z)/GGR(z = 9)
given by the exact solution to equation (13), or by the approximate integral solution (17), comput-
ing H(z) and Ωm(z) from equations (3) and (5) given the cosmological parameters and w(z). For
reference, we note that CAMB normalization with WMAP7 data yields, for a flat ΛCDM model,

σ8(z = 9) × (1 + 9) = 1.118

[
As(k = 0.002Mpc−1)

2.43 × 10−9

]1/2

(75.85h)(ns−1)/2

×
(

Ωbh
2

0.023

)−0.340 (
Ωmh2

0.13

)0.574 (
h

0.71

)0.674

. (46)

This formula, similar to that in Hu and Jain (2004), is found by varying the parameters in CAMB
calculations one at a time to evaluate logarithmic derivatives; spot checks indicate that it is accurate
to 0.2% over the 2σ range of the WMAP7 errors, and for the range of w and Ωk variations in Table 1.
For other models, one can use this formula to get σ8(z = 9) in GR, assuming that the effect of dark
energy at z > 9 is negligible, then multiply by G(z)/GGR(z = 9) to get σ8(z).

There are, of course, degeneracies between the modified gravity parameters G9 and ∆γ and the
w(z) history, since both affect structure growth. However, if w(z) is pinned down well by D(z)
and H(z) measurements, then measurements of matter clustering can be used to constrain G9 and
∆γ. The clustering amplitude at a single redshift yields a degenerate combination of these two
parameters, but measurements at multiple redshifts or direct measurements of the growth rate
via redshift-space distortions can separate them in principle. Of course, there is no guarantee
that a modified gravity prediction can be adequately described by G9 and a constant ∆γ, and
one might more generally consider (in eq. 45), for example, a functional history γ(z) analogous to
w(z). However, any constraints inconsistent with G9 = 1, ∆γ = 0 after marginalizing over w(z)
and cosmological parameters would be suggestive evidence for a breakdown of GR. Even if the
measurements themselves are convincing, one must be cautious in the interpretation, since apparent
discrepancies could arise from w(z) histories outside the families considered in marginalization or
from other violations of the underlying assumptions. To give two examples, “early dark energy”
that is dynamically significant at high redshift could cause an apparent G9 < 1, and decay of dark
matter into dark energy could cause an apparent ∆γ > 0, since the value of Ωm(z)/Ωm(z = 0)
would be higher than in the standard picture. Modified gravity could also give scale-dependent
growth, which would produce deviations in the matter power spectrum away from the expected
shape.

2.5. Overview of Methods

We conclude our “background” material with a short overview of the methods we will describe
in detail over the next four sections.

25



Observations show that Type Ia supernovae have a peak luminosity that is tightly correlated
with the shape of their light curves — supernovae that rise and fall more slowly have higher peak
luminosity. The intrinsic dispersion around this relation is only about 0.15 mag, allowing each well
observed supernova to provide an estimated distance with a 1σ uncertainty of about 8%. Surveys
that detect tens or hundreds of Type Ia supernovae and measure their light curves and redshifts can
therefore measure the distance-redshift relation D(z) with high precision. Because the supernova
luminosity is calibrated mainly by local observations of systems whose distances are inferred from
their redshifts, supernova surveys effectively measure D(z) in units of h−1 Mpc, not in absolute
units independent of H0.

Baryon acoustic oscillations provide an entirely independent way of measuring cosmic distance.
Sound waves propagating before recombination imprint a characteristic scale on matter clustering,
which appears as a local enhancement in the correlation funtion at r ≈ 150 Mpc. Imaging surveys
can detect this feature in the angular clustering of galaxies in bins of photometric redshift, yielding
the angular diameter distance D(zphot). A spectroscopic survey over the same volume resolves the
BAO feature in the line-of-sight direction and thereby yields a more precise D(z) measurement.
Furthermore, measuring the BAO scale in the line-of-sight direction allows a direct determination
of H(z). Other tracers of the matter distribution can also be used to measure BAO. Because the
BAO scale is known in absolute units (based on straightforward physical calculation and parameter
values well measured from the CMB), the BAO method measures D(z) in absolute units — Mpc not
h−1 Mpc — so BAO and supernova measurements to the same redshift carry different information.

The shapes of distant galaxies are distorted by the weak gravitational lensing of matter fluc-
tuations along the line of sight. The typical distortion is only ∼ 0.5%, much smaller than the
∼ 30% dispersion of intrinsic galaxy ellipticities, but by measuring the correlation of ellipticities as
a function of angular separation, averaged over many galaxy pairs, one can infer the power spec-
trum of the matter fluctuations producing the lensing. Alternatively, one can measure the average
elongation of background, lensed galaxies as a function of projected separation from foreground
lensing galaxies to infer the galaxy-mass correlation function of the foreground sample, which can
be combined with measurements of galaxy clustering to infer the matter clustering. By measuring
the projected matter power spectrum for background galaxy samples at different z, weak lensing
can constrain the growth function G(z). However, the strength of lensing also depends on distances
to the sources and lenses, so in practice the weak lensing method constrains combinations of G(z)
and D(z).

Clusters of galaxies trace the high end of the halo mass function, typically M ≥ 1014M⊙. Ob-
servationally, one measures the number of clusters as a function of a mass proxy, which directly
constraints dn/(d ln M dVc), where dn/d ln M is the halo mass function (eq. 37) and dVc is the
comoving volume element at the redshift of interest (eq. 11). The mass function at high M is
exponentially sensitive to the amplitude of matter fluctuations, and therefore to G(z), though this
information is mixed with that in the cosmology dependence of the volume element dVc ∝ D2

AH−1.
Clusters can be identified in optical/near-IR surveys that find peaks in the galaxy distribution and
measure their richness, in wide-area X-ray surveys that find extended sources and measure their
X-ray luminosity and temperature, or in Sunyaev-Zel’dovich (SZ) surveys that find localized CMB
decrements and measure their depth. The critical step in any cluster cosmology investigation is cal-
ibrating the relation between halo mass and the survey’s cluster observable — richness, luminosity,
temperature, SZ decrement — so that the mass function can be inferred from (or constrained by)
the distribution of observables. We will argue in §?? that the most reliable route to such calibration
is via weak lensing, making wide-area optical or near-IR imaging a necessary component of any
high-precision cosmic acceleration studies with clusters.
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The next four sections, omitted here, give detailed discussions of Type Ia super-

novae, BAO, weak lensing, and cluster abundances as probes of cosmic acceleration,

including discussions of the statistical and systematic uncertainties in each method.

Another section briefly summarizes a number of alternative probes, including preci-

sion measurement of H0, redshift-space distortions, the Alcock-Paczynski test, scale-

dependence of the growth factor, weak lensing tests of gravitational potentials, the

integrated Sachs-Wolfe effect, and precision gravity tests.
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3. A Balanced Program on Cosmic Acceleration

Having discussed many observational methods individually, we now turn to what we might hope
to learn from them in concert. To the extent that this report has an underlying editorial theme, it
is the value of a balanced observational program that pursues multiple techniques at comparable
levels of precision. In our view, there is much more to be gained by doing a good job on three or
four methods than by doing a maximal job on one at the expense of the others. This is not a “try
everything” philosophy — moving forward from where we are today, an observational method is
interesting only if it has reasonable prospects of achieving percent- or sub-percent-level errors, both
statistical and systematic, on observables such as H(z), D(z), and G(z). The successes of cosmic
acceleration studies to date have raised the field’s entry bar impressively high.

A balanced strategy is important both for cross-checking of systematics and for taking advantage
of complementary information. Regarding systematics, the next generation of cosmic accleeration
experiments seek much higher precision than those carried out to date, so the risk of being limited or
biased by systematic errors is much higher. Most methods allow internal checks for systematics —
e.g., comparing distinct populations of SNe, measuring angular dependence and tracer dependence
of BAO signals, testing for B-modes and redshift-scaling of WL — but conclusions about cosmic
acceleration will be far more convincing if they are reached independently by methods with different
systematic uncertainties. Two methods only provide a useful cross-check of systematics if they have
comparable statistical precision; otherwise a result found only in the more sensitive method cannot
be checked by the less sensitive method.

Regarding information content, we have already emphasized the complementarity of SN and
BAO as distance determination methods. SN have unbeatable statistical power at z . 0.6, while
BAO surveys that map a large fraction of the sky with adequate sampling can achieve higher
precision at z & 0.8. Overlapping SN and BAO measurements provide independent physical infor-
mation because the former measure relative distances and the latter absolute distances (h−1 Mpc
vs. Mpc), and the value of h is itself a powerful dark energy diagnostic in the context of CMB
constraints (see Figure 2, §2.4, and Hu 2005). WL, clusters, and redshift-space distortions provide
independent constraints on expansion history, at levels that can be competitive with SN and BAO,
and they provide sensitivity to structure growth. Without structure probes, we would have little
hope of clues that might locate the origin of acceleration in the gravitational sector rather than the
stress-energy sector, and we would, more generally, reduce the odds of “surprises” that might push
us beyond our current theories of cosmic acceleration.

The primary purpose of this section is to present quantitative forecasts for a program of Stage IV
dark energy experiments and to investigate how the forecast constraints depend on the performance
of the individual components of such a program. Our forecasts are analogous to those of the DETF
(Albrecht et al., 2006), updated with a more focused idea of what a Stage IV program might look
like, and updated in light of subsequent work on parameterized models and figures of merit for dark
energy experiments, most directly that of the JDEM FoM Science Working Group (Albrecht et al.,
2009). In §3.1 we summarize our assumptions about the fiducial program. In §3.2 we describe
the methodology of our forecasts, in particular the construction of Fisher matrices for the fiducial
program. In §3.3 we present results for the fiducial program and for variants in which one or more
components of this program are made significantly better or worse. We also compare these results
to forecasts of a “Stage III” program represented by experiments now underway or nearing their
first observations.

We have elected to focus on SN, BAO, and WL as the components of these forecasts, for two
reasons. First, it is more straightforward (though still not easy) to define the expected statistical
and systematic errors for these methods than for others. Second, the most promising alternative
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methods — clusters, redshift-space distortions, and the Alcock-Paczynksi effect — will be enabled
by the same data sets obtained for WL and BAO studies. It is therefore reasonable to view these
as auxiliary methods that may improve the return from these data sets (perhaps by substantial
factors) rather than as drivers for the observational programs themselves.

3.1. A Fiducial Program

As discussed in §1.3, Astro2010 and the European Astronet report have placed high priority on
ground- and space-based dark energy experiments. The “Stage III” experiments currently underway
will already allow much stronger tests of cosmic acceleration models, and “Stage IV” facilities built
over the next decade should advance the field much further still.

For SN studies, we anticipate that Stage IV efforts will be limited not by statistical errors but
by systematics associated with photometric calibration, dust extinction, and evolution of the SN
population. For our fiducial program, we assume that SN surveys will achieve net errors (statistical
+ systematic) of 0.01 mag for the mean distance modulus in each of four redshift bins, with ∆z = 0.2
and a maximum redshift zmax = 0.8. We treat the bin-to-bin errors as uncorrelated, though this is
clearly an approximation to systematic errors that are correlated at nearby redshifts and gradually
decorrelate as one considers differing redshift ranges and observed-frame wavelengths. Even with
0.15 mag errors per SN, achieving this level of statistical error requires only 225 SNe per bin, and
we expect that the error per SN can be reduced by working at red/IR wavelengths and by selecting
sub-populations based on host galaxy type, spectral properties, and light curve shape. For purely
ground-based efforts, we consider our 0.01 mag floor for systematic errors to be optimistic, given
the challenges of dust extinction corrections and photometric calibration. However, a space-based
program at rest-frame near-IR wavelengths, enabled by WFIRST, could plausibly achieve better
than 0.01 mag systematics. We suspect that it will be hard to push calibration and evolution
systematics below 0.005 mag even with WFIRST, and pushing statistical errors below this level
begins to place severe demands on spectroscopic capabilities, unless purely photometric information
can be used to identify populations with scatter below 0.1 mag per SN. We consider the impact of
increasing zmax beyond 0.8, but the power of the SN program depends much more strongly on the
magnitude error than on the maximum redshift.

For BAO, the primary metric of statistical constraining power is the total comoving volume
mapped spectroscopically with a sampling density high enough to keep shot-noise sub-dominant.
There are several projects in the planning stages that could map significant fractions of the comoving
volume available out to z ≈ 3. These include the near-IR spectroscopic components of Euclid
and WFIRST, ground-based optical facilities such as BigBOSS, DEspec, and SuMIRE PFS, and
radio intensity-mapping experiments. For our fiducial program, we assume that these projects
will collectively map 25% of the comoving volume out to z = 3, with errors a factor of 1.8 larger
than the linear theory cosmic variance errors.14 We specifically assume full redshift coverage from
z = 0 − 3 with fsky = 25% sky fraction, but other combinations of redshift coverage and fsky that
have the same total comoving volume yield similar results. The factor 1.8 accounts for imperfect
sampling (hence non-negligible shot-noise) and for non-linear degradation of the BAO signal. It
approximates the effects of sampling with nP = 2 and correcting (through reconstruction, §??)
50% but not 100% of the non-linear Lagrangian displacement of tracers. We implicitly assume that
theoretical systematics associated with location of the BAO peak will remain below this level, an
assumption we consider reasonable but not incontrovertible based on the discussion in §??.

14This is equivalent to assuming linear theory cosmic variance over a fractional volume 25%/1.82 = 7.7%.
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For WL, the primary metric of statistical constraining power is the total number of galaxies
that have well measured shapes and good enough photometric redshifts to allow accurate model
predictions and removal of intrinsic alignment systematics. For our fiducial case, we assume a
survey of 104 deg2 achieving an effective surface density of 23 galaxies per arcmin2 with zmed = 0.84,
corresponding to IAB < 25 and reff > 0.25′′. The effective galaxy number is 8.3× 108. Euclid could
likely achieve a higher surface density, though perhaps with a smaller survey area15. WFIRST could
plausibly reach this surface density and survey area with a 2-2.5 year WL campaign. LSST will
survey a larger area, and it might or might not achieve this effective surface density, depending on
how low a value of reff/rPSF it can work to before shape measurements are systematics dominated.
We compute constraints from cosmic shear in 14 bins of photometric redshift and from the shear-
ratio test described in §??. but we do not incorporate higher order lensing statistics or galaxy-shear
cross-correlations. We include information up to multipole lmax = 3000, beyond which statistical
power becomes limited at this surface density and systematic uncertainties associated with non-
linear evolution and baryonic effects become significant.

Forecasting the systematic uncertainties in Stage IV WL experiments is very much a shot in
the dark. Systematic errors are already comparable to statistical errors in surveys of 100 deg2, so
lowering them to the level of statistical errors in a 104 deg2 survey that has higher galaxy surface
density requires more than an order of magnitude improvement. We therefore consider a “fiducial”
and an “optimistic” case for WL systematics. For the fiducial case, we incorporate (and marginalize
over) aggregate uncertainties of 2×10−3 in shear calibration and 2×10−3 in the mean photo-z, with
errors in each redshift bin larger by

√
14 but uncorrelated across bins. We also incorporate intrinsic

alignment uncertainty as described by Albrecht et al. (2009, §2h), which includes marginalization
over both GI and II components (see §??). For our “optimistic” case we adopt no specific form of
the systematic errors but simply assume that they will double the statistical errors throughout. At
an order of magnitude level, we can see that the optimistic case corresponds to a global fractional

error σ ∼ 2N
−1/2
mode ∼ 2f

−1/2
sky l−1

max = 1.3 × 10−3, significantly lower than the fiducial case assumption

of 2×10−3 errors for shear and photo-z calibration (which, roughly speaking, combine in quadrature
to make a 2.8 × 10−3 multiplicative uncertainty).

3.2. Forecasting Constraints

The fiducial program outlined above provides a baseline for evaluating improvement in the
determination of the cosmological parameters relative to current constraints. We use a Fisher
matrix analysis to quantify this improvement and to study the complementarity of the main probes
of cosmic acceleration. Since our knowledge of the exact design of future surveys and the systematic
errors they will face is inherently imperfect, we also consider the effect of varying the precision of
each technique in our forecasts, including both pessimistic and optimistic cases for SN, BAO, and
WL data.

Determining the impact of each probe on our understanding of cosmic acceleration requires
metrics for evaluating progress. The precision with which the dark energy equation of state (and
its possible time dependence) can be measured is a common choice; while not the only quantity
of interest, it is clearly a central piece of the puzzle. The DETF report (Albrecht et al., 2006)
defined a “figure of merit” (FoM) for dark energy experiments based on the phenomenological
model of equation (24) with parameters w0 and wa, and this has since become a standard tool for
comparison of forecasts and current constraints. The DETF FoM is proportional to the inverse of

15At least if exposures are deep enough to reach the 25σ detection threshold we think is necessary to achieve
accurate shape measurements see §??
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the area of the 95% C.L. error ellipse for w0 and wa, after marginalization over the uncertainty in
other parameters including spatial curvature. Since the constant of proportionality varies widely in
practice, here we make the simple choice that the figure of merit expressed in terms of the equation
of state at the “pivot” redshift (eq. 25) is given by

FoM =
1

σ(wp)σ(wa)
. (47)

The FoM indicates how well an experiment determines the dark energy equation of state and its
slope at the pivot redshift and therefore indicates the ability to detect deviations from the standard
ΛCDM model with wp = −1 and wa = 0.

While the DETF FoM is relatively simple to evaluate for a particular experiment, it omits much
of the information that will be available from future experiments, including some potentially impor-
tant clues to the nature of cosmic acceleration. For example, the true dark energy dynamics may
be considerably more complicated than what the two-parameter linear model can accommodate, so
that constraints on w0 and wa may yield incomplete or misleading results. Additionally, the equa-
tion of state alone is insufficient to describe the full range of possible alternatives to the standard
cosmological model. For example, modified gravity theories can mimic the effect of any particular
equation of state evolution on the Hubble expansion rate and the distance-redshift relation while
altering the rate of growth of large-scale structure (Song et al., 2007). Including such possibili-
ties requires extra parameters that describe changes in the growth history that are independent
of equation of state variations. Other standard parameters of the cosmological model, such as the
spatial curvature and the Hubble constant, are important due to degeneracies with the effects of
cosmic acceleration that can limit the precision of constraints on the dark energy equation of state.

To include more general variations of the equation of state as well as altered growth of structure
from modifications to GR on large scales, we adopt the parameterization of the JDEM Figure-
of-Merit Science Working Group (FoMSWG; Albrecht et al. 2009). The equation of state in this
parameterization is allowed to vary independently in each of 36 bins of width ∆a = 0.025 extending
from the present to a = 0.1 (z = 9). Specifically, the equation of state has a constant value of wi

at (1 − 0.025i) < a < [1 − 0.025(i − 1)], for i = 1, . . . , 36. At earlier times, the equation of state is
assumed to be w = −1, although the impact of this assumption is typically quite small since dark
energy accounts for a negligible fraction of the total density at z > 9 in most models. Modifications
to the linear growth function of GR GGR(z) are included through the parameters G9 and ∆γ as
defined in equations (44) and (45). These parameters describe the change relative to GR in the
normalization of the growth of structure at z = 9 and in the growth rate at z < 9, respectively.
Adding these to the binned wi values and the standard ΛCDM parameters, the full set is

p = (w1, . . . , w36, ln G9,∆γ,Ωmh2,Ωbh
2,Ωkh

2,Ωφh2, ln As, ns,∆M) , (48)

where the primordial amplitude As is defined at k = 0.05Mpc−1. ∆M is an overall offset in
the absolute magnitude scale of Type Ia supernovae. The Hubble constant is determined by these
parameters through h2 = Ωmh2 +Ωkh

2 +Ωφh2. We compute our forecasts at the fiducial parameter
values chosen by FoMSWG to match CMB constraints from the 5-year release of WMAP data
(Komatsu et al., 2009); these are listed in Table 2. These parameters are similar but not identical
to those of the model used in §2 (Table 1), which used WMAP7. Note that spatially flat ΛCDM
and GR are assumed for the fiducial model.

We use a Fisher matrix analysis to estimate the constraints on these parameters from the fiducial
program defined in §3.1 and its variations. The Fisher matrix for each experiment consists of a
model of the covariance matrix for the observable quantities and derivatives of these quantities with
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Table 2 Fiducial Model for Forecasts
w1 . . . w36 ln G9 ∆γ Ωmh2 Ωbh

2 Ωkh
2 Ωφh2 ln As ns ∆M

−1 . . . −1 0 0 0.1326 0.0227 0 0.3844 −19.9628 0.963 0

respect to the parameters. We compute the latter numerically with finite differences and confirm
the results using analytic expressions when possible.

We model SN data as measurements of the average SN magnitude in each of several redshift
bins. While our fiducial case assumes that the net magnitude error is uncorrelated from one bin to
the next, we also consider the impact of including a correlated component of the error by defining
the SN covariance matrix as

CSN
αβ = σ2

m,u

(
0.2

∆z

)
δαβ + σ2

m,c exp

(
−|zα − zβ |

∆zc

)
, (49)

where ∆z is the bin width, σm,u is the uncorrelated error in a bin of width ∆z = 0.2, σm,c is the

correlated error with correlation length ∆zc, and the net error in each bin zα is σm =
√

σ2
m,u + σ2

m,c .

In general these errors are redshift dependent, but here we assume that they are constant for
simplicity. For the fiducial forecasts we take σm,c = 0, so the covariance matrix is diagonal. The
SN Fisher matrix is then computed as a sum over redshift bins

F SN
ij =

∑

α,β

∂m(zα)

∂pi
(CSN

αβ )−1 ∂m(zβ)

∂pj
, (50)

where m(zα) = 5 log[H0〈DL(zα)〉] +M is the average magnitude in the bin and the derivatives are
taken with respect to the parameters of equation (48).

For BAO, we divide the observed volume into bins of equal width in ln(1 + z), assumed to be
uncorrelated, and compute the Fisher matrix

FBAO
ij =

∑

µ,ν,α

∂rµ(zα)

∂pi
[CBAO

µν (zα)]−1 ∂rν(zα)

∂pj
, (51)

where r(zα) = (D(zα)/s∗,H(zα)s∗) and s∗ is the sound horizon at recombination (see §2.3), for
which we use the fitting formula from Hu (2005),

s∗ ≈ (144.4Mpc)

(
Ωmh2

0.14

)−0.252 (
Ωbh

2

0.024

)−0.083

. (52)

We estimate the covariance matrix in each redshift bin using the BAO forecast code by Seo and
Eisenstein (2007), which provides estimates of the fractional error on distance and the Hub-

ble expansion rate at each redshift (relative to s∗), σln(D/s∗) =
√

CBAO
11 /(D/s∗) and σln(Hs∗) =√

CBAO
22 /(Hs∗), respectively, as well as the cross correlation r = CBAO

12 /
√

CBAO
11 CBAO

22 . For our

default forecasts, we start with the linear theory cosmic variance predictions, corresponding to the
limit of perfect sampling of the density field within the observed volume and no degradation of
the signal due to nonlinear effects. To approximate the effects of finite sampling and nonlinear-
ity, we increase these errors by a factor of 1.8 for our fiducial forecasts, which leads to parameter
constraints comparable to what would be expected with sampling nP = 2 and reconstruction that
halves the effects of nonlinear evolution. In Table 3 we list the volume for fsky = 0.25 and fiducial
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Table 3 BAO Forecasts for the Fiducial Program

zmin zmax Vfsky=0.25 [(Gpc/h)3] σln(D/s∗) [%] σln(Hs∗) [%] r

0.000 0.072 0.010 13.386 21.881 0.409
0.072 0.149 0.075 4.895 8.002 0.409
0.149 0.231 0.217 2.873 4.697 0.409
0.231 0.320 0.449 1.997 3.265 0.409
0.320 0.414 0.781 1.515 2.476 0.409
0.414 0.516 1.218 1.213 1.983 0.409
0.516 0.625 1.761 1.009 1.649 0.409
0.625 0.741 2.407 0.863 1.410 0.409
0.741 0.866 3.148 0.754 1.233 0.409
0.866 1.000 3.970 0.672 1.098 0.409
1.000 1.144 4.860 0.607 0.992 0.409
1.144 1.297 5.799 0.556 0.909 0.409
1.297 1.462 6.770 0.514 0.841 0.409
1.462 1.639 7.758 0.481 0.785 0.409
1.639 1.828 8.745 0.453 0.740 0.409
1.828 2.031 9.718 0.429 0.702 0.409
2.031 2.249 10.664 0.410 0.670 0.409
2.249 2.482 11.576 0.393 0.643 0.409
2.482 2.732 12.443 0.379 0.620 0.409
2.732 3.000 13.261 0.368 0.601 0.409

BAO covariance matrix elements for 20 redshift slices from 0 ≤ z ≤ 3. The results we obtain are
only weakly dependent on the number of redshift bins chosen to divide up the total volume.

The forecasts for the main SN, BAO, and WL probes are supplemented by the expected con-
straints from upcoming CMB measurements provided by the Planck satellite. We adopt the Fisher
matrix FCMB constructed by FoMSWG, which includes cosmological constraints from the 70, 100,
and 143 GHz channels of Planck with fsky = 0.7, assuming that data collected at other frequen-
cies will be used for foreground removal. The noise level and beam size for each channel comes
from the Planck Blue Book (pla, 2006). Information from secondary anisotropies of the CMB is
not included in this Fisher matrix; in particular, constraints from the ISW effect are removed by
requiring the angular diameter distance to the CMB to be matched exactly, as described in Al-
brecht et al. (2009). Additionally, the large-scale (ℓ < 30) polarization angular power spectrum and
temperature-polarization cross power spectrum, which mainly contribute to constraints on the op-
tical depth to reionization τ , are excluded from the forecast and replaced by a Gaussian prior with
width στ = 0.01. This prior accounts for uncertainty in τ due to limited knowledge of the redshift
dependence of reionization, which is not included in the simplest models of the CMB anisotropies.
Although τ does not appear in the parameter set for the Fisher matrices, marginalization over τ in
the CMB constraints contributes to the uncertainty on the primordial power spectrum amplitude
As, which in turn affects predictions for the growth of large-scale structure.

Combined constraints on cosmological parameters are obtained simply by adding the Fisher
matrices of the individual probes, i.e. F = FSN + FBAO + FWL + FCMB. Then the forecast for the
parameter covariance is C = F−1, and in particular the uncertainty on a given parameter pi after
marginalizing over the error on all other parameters is

√
[F−1]ii .

Computing the Fisher matrix in the FoMSWG parameter space with a large number of inde-
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pendent bins for w(z) gives us the flexibility to project these forecasts onto a number of simpler
parameterizations, including the w0–wa model for the purposes of computing the FoM. To change
from the original parameter set p to some new set q, we compute

F̃kl =
∑

i,j

∂pi

∂qk
Fij

∂pj

∂ql
, (53)

which gives the Fisher matrix F̃ for the new parameterization. In particular, projection from bins
wi to w0 and wa involves the derivatives ∂wi/∂w0 = 1 and ∂wi/∂wa = z/(1 + z). We also compute
the pivot redshift zp and the uncertainty in the equation of state at that redshift, wp. Given the
2 × 2 covariance matrix Cij for w0 and wa (marginalized over the other parameters), the pivot
values are computed as (Albrecht et al., 2009)

zp = − C12

C12 + C22
, (54)

σwp = C11 −
C2

12

C22
,

where the first index corresponds to w0 and the second to wa.
One drawback to the w0–wa parameterization is that constraints on w(z) at high redshift are

coupled to those at low redshift by the form of the model; for example, if observations determine
the value of the equation of state at z = 0 and at z = 0.1, then it is completely determined at high
redshift even in the absence of high redshift data. To specifically address questions related to the
ability of dark energy probes to constrain dark energy at low redshift vs. high redshift, we define an
alternative but equally simple parameterization in which w(z) takes constant, independent values in
each of two bins at z ≤ 1 and z > 1. The projection onto this parameterization using equation (53)
requires the derivatives ∂wi/∂w(z ≤ 1) = Θ(1 − zi) and ∂wi/∂w(z > 1) = 1 − Θ(1 − zi), where
Θ(x) is the Heaviside step function equal to 0 for x < 0 and 1 for x ≥ 0.

Principal components (PCs) of the dark energy equation of state provide another way to deter-
mine which features of the equation of state evolution are best constrained by a given combination
of experiments (Huterer and Starkman, 2003; Hu, 2002; Huterer and Cooray, 2005; Wang and
Tegmark, 2005; Dick et al., 2006; Simpson and Bridle, 2006; de Putter and Linder, 2008; Tang
et al., 2008; Crittenden et al., 2009; Mortonson et al., 2009b; Kitching and Amara, 2009; Maturi
and Mignone, 2009).

We compute the PCs for each forecast case by taking the total Fisher matrix for the original
parameter set (eq. 48) and marginalizing over all parameters other than the 36 binned values of
wi. If we call the Fisher matrix for the wi parameters Fw, then the PCs are found by diagonalizing
Fw:

Fw = QΛQT , (55)

where Q is an orthogonal matrix whose columns are eigenvectors of Fw and Λ is a diagonal
matrix containing the corresponding eigenvalues of Fw. Up to an arbitary normalization factor,
the eigenvectors are equal to the PC functions ei = (ei(z1), ei(z2), ...) which describe how the
binned values of w(z) are weighted with redshift. Here we adopt the normalization of Albrecht
et al. (2009),

36∑

k=1

ei(zk)ej(zk) =

36∑

k=1

ek(zi)ek(zj) = (∆a)−1δij , (56)

where ∆a = 0.025 is the bin width; this condition approximately corresponds to
∫ 1
0.1 da[ei(a)]2 = 1

for i = j in the limit of a large number of redshift bins. With this convention, the columns of Q
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are (∆a)1/2 ei . The PCs rotate the original set of parameters to a set of PC amplitudes QT (1+w)
with elements

βi = (∆a)1/2
36∑

j=1

ei(zj)(1 + wj) . (57)

Combining equations (56) and (57), we can construct w(z) in each redshift bin from a given set of
PC amplitudes as

wi = −1 +
36∑

j=1

αjej(zi) , (58)

where αi ≡ (∆a)1/2βi . The accuracy with which the αi can be determined from the data is given
by the eigenvalues of Fw, σi ≡ σαi

= (∆a/Λii)
1/2, and the PCs are numbered in order of increasing

variance (i.e. σi+1 > σi).
For constraints that are marginalized over the wi parameters, we impose a weak prior on wi as

suggested by Albrecht et al. (2009) to reduce the dependence of forecasts for ∆γ on the poorly-
constrained high redshift wi values, since arbitrarily large fluctuations in w(z) can alter the high
redshift growth rate. We include a weak Gaussian prior with width σwi

= ∆w/
√

∆a by adding to
the total Fisher matrix

F prior
ij =

{
σ−2

wi
δij , i ≤ 36 ,
0 , i > 36 ,

(59)

assuming that the parameters are ordered as in equation (48) with p1 = w1, p2 = w2, etc. For most
forecasts, we use a default prior width of ∆w = 10 (σwi

≈ 63), which approximately corresponds
to requiring that the average value of |1 + w| in all bins does not exceed 10. In the next section
we also consider how constraints on certain parameters change with a narrower prior of ∆w = 1.
For priors wider than the default choice, the Fisher matrix computations are subject to numerical
effects arising from the use of a finite number of wi bins to approximate continuous variations in
w(z), so we do not present results with weaker priors than ∆w = 10. Note that the construction
of PCs of w(z) as described above does not include such a prior on wi.

Table 4 Key to forecast variations.

Any × 4 Quadruple fiducial errors (divide Fisher matrix by 16).
Any × 2 Double fiducial errors (divide Fisher matrix by 4).
Any/2 Halve fiducial errors (multiply Fisher matrix by 4).

SN-III Stage III-like SN: total magnitude error of 0.03 per ∆z = 0.2 bin over 0 ≤ z ≤ 0.8.
SNzmax Increase max. redshift to zmax = 1.6 (8 bins with ∆z = 0.2 and 0.01 mag. error).
SNzmin Increase min. redshift to zmin = 0.2 (3 bins with ∆z = 0.2 and 0.01 mag. error).
SNcx Correlated errors: σm,u = σm,c = 0.007, ∆zc = 0.2, with x bins over 0 ≤ z ≤ 0.8.

BAO-III Stage III-like BAO, approximating forecasts for BOSS LRGs+HETDEX:
(D/s∗,Hs∗) errors of (1.0%, 1.8%) at z = 0.35, (1.0%, 1.7%) at z = 0.6,
and (0.8%, 0.8%) at z = 2.4.

BAOzmax Reduce maximum redshift to zmax = 2 (20 bins), retaining fsky = 0.25

WL-opt “Optimistic” Stage IV case (total error= 2× statistical).
WL-III Stage III-like WL, approximating forecasts for DES:

CMB-W9 Fisher matrix forecast for 9-year WMAP data.
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Table 5 Forecast uncertainties on parameters, varying a single probe at a time from the fiducial
specifications. With the exception of w(z > 1), a w0–wa model for the dark energy equation of
state is assumed.

Forecast case zp σwp FoM σw(z>1) 103 σΩk
102 σh σ∆γ σln G9

1 [SN,BAO,WL,CMB] 0.51 0.015 533 0.052 0.55 0.61 0.034 0.015
2 [SN,BAO,WL-opt,CMB] 0.43 0.013 687 0.049 0.64 0.47 0.026 0.016

3 [BAO,WL,CMB] 0.63 0.017 321 0.054 0.56 0.99 0.034 0.015
4 [SN-III,BAO,WL,CMB] 0.61 0.017 351 0.054 0.56 0.91 0.034 0.015
5 [SN×4,BAO,WL,CMB] 0.62 0.017 338 0.054 0.56 0.94 0.034 0.015
6 [SN×2,BAO,WL,CMB] 0.59 0.016 385 0.053 0.56 0.83 0.034 0.015
7 [SN/2,BAO,WL,CMB] 0.38 0.011 903 0.050 0.55 0.37 0.034 0.015
8 [SNzmax,BAO,WL,CMB] 0.46 0.012 690 0.051 0.55 0.47 0.034 0.015
9 [SNzmin,BAO,WL,CMB] 0.61 0.017 356 0.053 0.56 0.90 0.034 0.015

10 [SNc4,BAO,WL,CMB] 0.51 0.015 534 0.052 0.55 0.60 0.034 0.015
11 [SNc8,BAO,WL,CMB] 0.48 0.014 604 0.051 0.55 0.54 0.034 0.015
12 [SNc16,BAO,WL,CMB] 0.47 0.014 632 0.051 0.55 0.52 0.034 0.015

13 [SN,WL,CMB] 0.30 0.025 107 0.32 2.2 0.79 0.039 0.023
14 [SN,BAO-III,WL,CMB] 0.38 0.021 224 0.12 1.2 0.68 0.035 0.017
15 [SN,BAO×4,WL,CMB] 0.35 0.023 180 0.15 1.2 0.74 0.037 0.018
16 [SN,BAO×2,WL,CMB] 0.42 0.020 289 0.088 0.76 0.69 0.035 0.016
17 [SN,BAO/2,WL,CMB] 0.53 0.010 1070 0.033 0.47 0.45 0.034 0.014
18 [SN,BAOzmax,WL,CMB] 0.47 0.015 427 0.072 0.66 0.63 0.034 0.015

19 [SN,BAO,CMB] 0.47 0.017 427 0.059 0.78 0.64 — —
20 [SN,BAO,WL-III,CMB] 0.47 0.017 432 0.059 0.77 0.63 0.15 0.048
21 [SN,BAO,WL×4,CMB] 0.48 0.017 439 0.058 0.75 0.63 0.13 0.031
22 [SN,BAO,WL×2,CMB] 0.49 0.016 467 0.056 0.68 0.63 0.065 0.020
23 [SN,BAO,WL/2,CMB] 0.52 0.013 671 0.048 0.45 0.55 0.018 0.012

24 [SN,BAO,WL] 0.37 0.022 293 0.076 7.9 1.3 0.037 6.70
25 [SN,BAO,WL,CMB-W9] 0.48 0.016 473 0.056 1.1 0.63 0.037 0.019
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Table 6 Same as Table 5, but varying two or three probes at a time from the fiducial specifications.

Forecast case zp σwp FoM σw(z>1) 103 σΩk
102 σh σ∆γ σln G9

1 [SN,BAO,WL,CMB] 0.51 0.015 533 0.052 0.55 0.61 0.034 0.015

2 [SN-III,BAO-III,WL-III,CMB] 0.54 0.038 82 0.146 1.36 1.46 0.148 0.051
3 [SN-III,BAO-III,WL-III,CMB-W9] 0.45 0.048 58 0.181 2.42 1.49 0.149 0.064
4 [SN×4,BAO×4,WL×4,CMB] 0.57 0.051 42 0.183 1.34 2.40 0.128 0.033
5 [SN×2,BAO×2,WL×2,CMB] 0.54 0.027 151 0.096 0.85 1.20 0.065 0.021
6 [SN/2,BAO/2,WL/2,CMB] 0.49 0.008 1951 0.027 0.34 0.31 0.018 0.012

7 [SN-III,BAO-III,WL,CMB] 0.52 0.029 115 0.131 1.20 1.26 0.035 0.017
8 [SN×4,BAO×4,WL,CMB] 0.52 0.035 74 0.158 1.19 1.66 0.037 0.019
9 [SN×4,BAO×2,WL,CMB] 0.59 0.026 140 0.094 0.77 1.38 0.035 0.016

10 [SN×4,BAO/2,WL,CMB] 0.57 0.011 879 0.033 0.47 0.54 0.034 0.014
11 [SN×2,BAO×4,WL,CMB] 0.45 0.031 104 0.153 1.18 1.20 0.037 0.019
12 [SN×2,BAO×2,WL,CMB] 0.53 0.024 180 0.092 0.76 1.08 0.035 0.016
13 [SN×2,BAO/2,WL,CMB] 0.56 0.011 920 0.033 0.47 0.52 0.034 0.014
14 [SN/2,BAO×4,WL,CMB] 0.29 0.014 352 0.143 1.16 0.46 0.036 0.018
15 [SN/2,BAO×2,WL,CMB] 0.32 0.013 537 0.085 0.76 0.41 0.035 0.016
16 [SN/2,BAO/2,WL,CMB] 0.44 0.009 1522 0.032 0.47 0.32 0.034 0.014
17 [SNzmax,BAOzmax,WL,CMB] 0.44 0.013 554 0.070 0.66 0.50 0.034 0.015

Table 7 Continuation of Table 6.
Forecast case zp σwp FoM σw(z>1) 103 σΩk

102 σh σ∆γ σln G9

1 [SN,BAO,WL,CMB] 0.51 0.015 533 0.052 0.55 0.61 0.034 0.015

2 [SN,BAO-III,WL-III,CMB] 0.35 0.025 178 0.131 1.35 0.71 0.147 0.051
3 [SN,BAO×4,WL×4,CMB] 0.33 0.026 135 0.166 1.31 0.84 0.128 0.033
4 [SN,BAO×4,WL×2,CMB] 0.33 0.025 146 0.161 1.27 0.81 0.067 0.023
5 [SN,BAO×4,WL/2,CMB] 0.40 0.018 285 0.117 0.98 0.63 0.020 0.014
6 [SN,BAO×2,WL×4,CMB] 0.41 0.022 247 0.093 0.90 0.74 0.127 0.032
7 [SN,BAO×2,WL×2,CMB] 0.41 0.021 257 0.091 0.85 0.73 0.065 0.021
8 [SN,BAO×2,WL/2,CMB] 0.45 0.016 393 0.079 0.67 0.61 0.019 0.013
9 [SN,BAO/2,WL×4,CMB] 0.46 0.012 802 0.041 0.65 0.46 0.126 0.031

10 [SN,BAO/2,WL×2,CMB] 0.48 0.012 878 0.038 0.59 0.46 0.064 0.020
11 [SN,BAO/2,WL/2,CMB] 0.57 0.009 1405 0.028 0.34 0.42 0.018 0.012

12 [SN-III,BAO,WL-III,CMB] 0.59 0.020 273 0.061 0.77 0.99 0.146 0.048
13 [SN×4,BAO,WL×4,CMB] 0.61 0.020 263 0.060 0.75 1.05 0.126 0.031
14 [SN×4,BAO,WL×2,CMB] 0.61 0.019 284 0.058 0.68 1.02 0.065 0.021
15 [SN×4,BAO,WL/2,CMB] 0.59 0.014 472 0.049 0.45 0.77 0.018 0.012
16 [SN×2,BAO,WL×4,CMB] 0.57 0.019 307 0.060 0.75 0.90 0.126 0.031
17 [SN×2,BAO,WL×2,CMB] 0.58 0.018 329 0.057 0.68 0.88 0.065 0.020
18 [SN×2,BAO,WL/2,CMB] 0.58 0.014 518 0.049 0.45 0.70 0.018 0.012
19 [SN/2,BAO,WL×4,CMB] 0.35 0.013 753 0.056 0.74 0.38 0.126 0.031
20 [SN/2,BAO,WL×2,CMB] 0.36 0.012 800 0.054 0.67 0.38 0.065 0.020
21 [SN/2,BAO,WL/2,CMB] 0.41 0.010 1084 0.046 0.44 0.35 0.018 0.012
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3.3. Results: Forecasts for the Fiducial Program and Variations

3.3.1. Constraints in simple w(z) models

We begin with forecasts for which the 36 w(z) bins are projected onto the simpler w0–wa

parameter space. Tables 4–7 give the forecast 1σ uncertainties for the fiducial program and several
variations. Each forecast case is labeled by a list of the Fisher matrices that are added together,
and the basic variations we consider are simple rescalings of the total errors for each probe; for
example, [SN/2,BAO×4,WL-opt,CMB] includes the fiducial SN data with the total error halved
(i.e. the Fisher matrix multiplied by 4), 4 times the fiducial BAO errors, the optimistic version
of the WL forecast, and the fiducial Planck CMB Fisher matrix. Note that /2 denotes a more

powerful program and ×2 denotes a less powerful program. The key in Table 4 describes other
types of variations of the fiducial probes. In some cases we omit a probe entirely, e.g. [SN,BAO,WL]
sums the fiducial Fisher matrices of the three main probes but does not include the Planck CMB
priors. Note that even though we assume a specific systematic error component in computing
certain Fisher matrices (in particular, FWL), the cases with rescaled errors simply multiply each
Fisher matrix by a constant factor and thus do not distinguish between statistical and systematic
contributions to the total error.

Constraints on the equation of state are given in Tables 5–7 by the DETF FoM and the error on
wp. The rule of thumb that σwa ≡ (FoM×σwp)

−1 ≈ 10σwp holds at the ∼ 30% level for most of the
forecast variations we consider — i.e., at the best-constrained redshift, the value of w is typically
determined a factor of ten better than the value of its derivative. The forecast tables also list the
uncertainty in the high redshift equation of state w(z > 1) for the alternative parameterization
where w(z) takes independent, constant values at z ≤ 1 and z > 1. Note that all of these w(z)
constraints are marginalized over uncertainties in G9 and ∆γ, so they do not assume that structure
growth follows the GR prediction.

For the fiducial program outlined in §3.1, the DETF FoM is projected to be around 500–700,
depending on whether the WL forecast uses the default systematic error model or the optimistic
model. This is roughly an order of magnitude larger than the FoM forecasted for a combination
of Stage III experiments (e.g. see Table 6, rows 2–3) and nearly two orders of magnitude larger
than current, “Stage II” FoM values (∼ 10). The equation of state in the w0–wa parameterization
is best measured by the fiducial set of Stage IV experiments at a redshift zp ≈ 0.5 with a 1σ
precision of σwp ≈ 0.014, and the time variation of w(z) is determined to within σwa ≈ 0.12. The
fiducial program also yields impressive constraints of 5.5 × 10−4 on Ωk and 0.61 km s−1 Mpc−1 on
H0. Forecast 1σ errors for the modified gravity parameters are 0.034 on ∆γ and 0.015 on ln G9.
We caution, however, that the Ωk, H0, and G9 errors (but not the ∆γ error) are sensitive to our
assumption of the w0–wa parameterization (see Figures 8–12 below). CMB constraints make a
critical contribution — the FoM drops from 533 to 293 if they are omitted entirely (Table 5, line
24) — but the difference between Planck precision and anticipated WMAP9 precision is modest
(line 25).

Figure 5 illustrates the key results of our forecasting investigation, highlighting many aspects of
the interplay among the three observational probes. In the upper left panel, the solid curve shows
how the FoM changes as the total SN errors vary from four times fiducial to half fiducial, keeping
the other probes (BAO, WL, and CMB) fixed at their fiducial levels. Other curves show the effect
of doubling WL or BAO errors or switching to the optimistic WL forecast. The lower panels show
analogous results from varying the BAO or WL errors, while the upper right panel shows the effect
of changing the maximum redshift of the SN program. Over the range of variations plotted in
Figure 5, the FoM varies from barely 100 to over 1000.

One notable trend in the FoM scaling is that it is not uniform among the three main probes.
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Figure 5 The DETF FoM, (σwpσwa)
−1, for the fiducial program and simple variants. In each panel,

the open circle marks the FoM of the fiducial program. In the upper left panel, the other points
along the solid curve show the effect of scaling the error on the SN measurements by factors of
2 or 4 while keeping errors for other probes fixed at their fiducial values. Dotted, short-dashed,
and long-dashed curves show the effect of, respectively, doubling the BAO errors, doubling the WL
errors, or adopting in the optimistic WL forecasts in which systematic errors are simply twice the
statistical errors. Other panels show analogous results, but instead of scaling the total SN error
they scale the total BAO error (lower left), the total WL error (lower right), or the maximum
redshift of the SN constraints (upper right). In each panel, the dashed gray line marks the forecast
performance of Stage III probes (including Planck) with FoM=82.
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Starting from the fiducial program, the effect of doubling or halving errors is greater for BAO
than for SN, and greater for SN than for WL. This scaling implies that BAO data provide the
greatest leverage in these forecasts. However, the hierarchy of the three probes is sensitive to the
assumptions about each experiment; in particular, assuming the optimistic version of WL errors
promotes WL from having the least leverage on the FoM to having the most leverage. More
generally, the fact that varying the errors of any individual probe changes the FoM noticeably
demonstrates the complementarity of the methods.

Unlike many previous FoM forecasts, we marginalize over the structure growth parameters
∆γ and ln G9, which tends to increase the uncertainties on w0 and wa. In most cases, the dif-
ference between the marginalized constraints and ones obtained under the assumption of GR
(∆γ = ln G9 = 0) is small, but the difference is greater if WL contributes significantly to ex-
pansion history constraints; for example, for the fiducial program, the change in the FoM due to
assuming GR is only 533 → 621, whereas with the WL-opt forecast the change is 687 → 979.

For SN observations, it is interesting to ask whether it is better to go after SNe at high redshifts
or to focus on reducing the errors on SN data at low redshifts. Comparing the upper panels of
Figure 5, we find that the benefit from reducing errors is typically greater than that from obtaining
SNe beyond z ∼ 1, at least for the FoM. For example, reducing the error per redshift bin from
0.01 mag (the fiducial value) to 0.005 mag raises the FoM by a factor of 1.69, but increasing
the maximum redshift from 0.8 to 1.6 raises the FoM by only 1.29 (see Table 5). If BAO errors
are doubled, the FoM drops substantially, but SN errors still have much greater leverage than
SN maximum redshift. We have assumed in these forecasts that the error per redshift bin stays
constant as the maximum SN redshift increases, but in reality higher redshift SNe are likely to have
larger systematic errors associated with them, which would diminish the gains from high redshift
SNe even more than indicated by the flattening of curves in Figure 5.

The weak dependence of w(z) constraints on the maximum SN redshift extends to other pa-
rameters as well. Figure 6 compares the effect on 1σ errors of varying the maximum SN redshift
to that of varying the maximum BAO redshift. For the w0–wa model, the errors on all parameters
are relatively insensitive to changes in the maximum SN redshift at z & 1, but the errors on wa

and Ωk decrease by a factor of a few as the maximum BAO redshift increases from z = 1 to z = 3.
Likewise, the high redshift equation of state w(z > 1) can be determined much more precisely as
BAO data extend to higher redshifts, but it depends little on the maximum SN redshift. For the
fiducial Stage IV forecasts, only the Hubble constant error depends significantly on the depth of SN
observations (assuming a w0–wa model). More pessimistic assumptions about the achievable BAO
errors enhance the importance of high redshift SNe for determining wp (dotted line in Figure 6),
but the dependence of other parameters on zmax for the SN data remains weak.

3.3.2. Constraints on structure growth parameters

While the DETF FoM is a useful metric for studying the impact of variations in each of the dark
energy probes, it does not tell the whole story. Deviations from the standard model might show up
in other sectors of the parameter space; for example, a detection of non-GR values for the growth
parameters ∆γ and G9 could point to a modified gravity explanation for cosmic acceleration that
would not be evident from measurements of w(z) alone. Thus, even the less optimistic version of the
WL experiment, which adds relatively little to the w(z) constraints obtained by the combination
of fiducial SN, BAO, and CMB forecasts, is a critical component of a program to study cosmic
acceleration because of its unique role in determining the growth parameters ∆γ and G9.

The impact of various experiments on the structure growth parameters is more evident if we
extend the DETF FoM to include ∆γ in addition to w0 and wa. As shown in Figure 7, the scaling
of this new FoM with respect to WL errors (and, to a lesser extent, BAO errors) is much steeper
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Figure 6 Variation of 1σ parameter errors with the maximum redshift for BAO (left) or SN data
(right). For the solid curves, fiducial Stage IV forecasts are assumed for all other probes. The
dotted curve in the right panel shows the scaling of σ(wp) with SN zmax assuming 4 times larger
BAO errors (BAO×4). The plotted errors assume a w0–wa parametrization (except for w(z > 1)).

than it is for the usual FoM (Figure 5). We do not show the scaling with SN errors or zmax since
those assumptions do not affect the expected uncertainties for ∆γ and G9 (see Table 5, lines 3–12).
One could also consider versions of the FoM that include uncertainties in G9 and that account for
the correlations between the structure growth parameters and the dark energy equation of state.

The complementarity between the SN, BAO, and WL techniques is further demonstrated by
the contours in Figures 8–10, which show the forecast 68% confidence level contours in the w0.5–wa

and ∆γ–ln G9 planes after marginalizing over other parameters. Instead of w0 we plot w0.5, the
equation-of-state parameter at z = 0.5, because it is much less correlated with wa for most of the
forecast scenarios. In every panel, the blue ellipse shows the error contour of the fiducial forecast
while other ellipses show the effect of varying the errors of the indicated method. The opposite
orientation of ellipses in Figures 8 and 9 demonstrates the complementary sensitivity of SN and
BAO to w(z): the SN data are mainly sensitive to the equation of state at low redshift, whereas
BAO data measure the equation of state at higher redshift. However, the sensitivity to the beyond-
GR growth parameters comes entirely from WL data, which provide the only direct measurements
of growth, and the strength of the ∆γ and G9 constraints depends directly on the WL errors, as
shown in Figure 10. Conversely, these constraints are very weakly sensitive to the SN or BAO
errors (Figs. 8 and 9), showing that the uncertainties are dominated by the growth measurements
themselves rather than residual uncertainty in the expansion history. Inspection of Table 5 shows
that the ∆γ constraints are essentially linear in the WL errors, while the lnG9 constraints scale
more slowly.
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Figure 7 FoM scaling with BAO errors (left) and WL errors (right) including changes in the error
on ∆γ, normalized to the forecast uncertainty for the fiducial program, σfid

∆γ = 0.034. The fiducial

Stage IV forecast is marked by an open circle. For the Stage III forecast, FoM×(σfid
∆γ/σ∆γ) = 19.

Although the w0–wa parameterization is flexible enough to describe a wide variety of expansion
histories, it is too simple to account for all possibilities; in particular, w(z) is restricted to functions
that are smooth and monotonic over the entire history of the universe. Because many cosmolog-
ical parameters are partially degenerate with the dark energy evolution, assumptions about the
functional form of w(z) can strongly affect the precision of constraints on other parameters. As
an example of this model dependence, the right panels of Figures 8–10 show how the constraints
on the growth parameters weaken (dashed curves) if one allows the 36 binned wi values to vary
independently instead of assuming that they conform to the w0–wa model. While ∆γ forecasts are
only mildly affected by the choice of dark energy modeling, constraints on the z = 9 normalization
parameter G9 depend strongly on the form of w(z). This dependence follows from the absence of
data probing redshifts 3 . z < 9 in the fiducial Stage IV program. In the w0–wa model, dark
energy evolution is well determined even at high redshifts, since the two parameters of the model
can be measured from data at z < 3, and thus the growth function at z = 9 is closely tied to the
low redshift growth of structure measured by WL. However, allowing w(z) to vary independently at
high redshift where it is unconstrained by data decouples the low and high redshift growth histories,
and therefore G9 can no longer be determined precisely. In fact, the constraints on G9 in that case
depend greatly on the chosen prior on wi (taken to be the default prior of σwi

= 10/
√

∆a in Fig-
ures 8–10). One important consequence of this dependence on the w(z) model is that an apparent
breakdown of GR via G9 6= 1 might instead be a sign that the chosen dark energy parameterization
is too restrictive.

3.3.3. Dependence on w(z) model and binning of data

Other parameters are also affected to varying degrees by the choice of w(z) model and the
priors on the model parameters. Figure 11 shows how errors on Ωk and h are affected by relaxing
assumptions about dark energy evolution. For the fiducial program and minor variants, Ωk is very
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Figure 8 Forecasts (68% confidence levels) for dark energy and growth parameters, varying errors
on SN data: fiducial×4 (red), ×2, (green), ×1 (blue), and /2 (black). In all cases, the fiducial
forecasts are used for the other probes (BAO, WL, CMB). Contours in the left panel use the value
of the equation of state at z = 0.5 (close to the typical pivot redshift), w0.5 = w0 + wa/3. Dashed
contours in the right panel show the errors on growth parameters for the original, binned w(z)
parametrization, with the default priors corresponding to deviations of . 10 in the average value
of w. Solid contours assume a w0–wa parametrization.

weakly correlated with w0 and wa, resulting in similar errors on curvature for the w0–wa and ΛCDM
models. However, generalizing the dark energy parameterization to include independent variations
in 36 redshift bins can degrade the precision of Ωk measurements by an order of magnitude or
more. In that case, the error on Ωk is very sensitive to the chosen prior on the value of wi in each
bin, and it improves little as the BAO errors decrease. This dependence on priors reflects the fact
that curvature is most correlated with the highest redshift wi values, which are poorly constrained
by the fiducial combination of data. Relative to curvature, constraints on the Hubble constant are
affected more by the choice of dark energy parameterization but less by priors on wi in the binned
w(z) model.

Figure 12 shows the dependence of σh on the precision of SN data for various dark energy
parameterizations (σΩk

is nearly independent of the SN errors for this range of variations around
the fiducial forecast; see Table 5). In the left and right panels we compare forecasts with the same
total number of SNe at z < 0.8 but divided into different numbers of redshift bins (4 and 16 for the
left and right panels, respectively). Since it is unrealistic to expect that SN constraints in different
redshift bins remain independent as the bin width decreases, we include the correlated error term
in equation (49), with σm,u = σm,c = 0.007 and ∆zc = 0.2, so that the total error in each redshift
bin of width 0.2 is 0.01 as in the fiducial SN forecast. These SN forecasts with redshift correlations
correspond to the cases labeled “SNc4” and “SNc16” in Table 5. Note that parameter errors from
the SNc4 forecasts are nearly the same as the default forecasts with four uncorrelated SN bins (e.g.
compare rows 1 and 10 in Table 5).

If we assume a w0–wa model for dark energy, Hubble constant errors strongly depend on the
precision of SN data. However, the left panel of Figure 12 shows that either decreasing or increasing
the number of dark energy parameters can almost completely eliminate the dependence of σh on
the SN data. In the case of the simpler ΛCDM model, the combination of the fiducial BAO, WL,
and CMB forecasts is sufficient to precisely determine all of the model parameters, and adding
information from SN data has a negligible effect on the parameter errors. Adding w0 and wa to
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Figure 9 Same as Fig. 8, but varying BAO errors from fiducial×4 (red) to fiducial/2 (black).

the model introduces degeneracies between these dark energy parameters and other parameters,
including h. Since constraints from SN data help to break these degeneracies, reducing SN errors
can significantly improve measurement of the Hubble constant in the w0–wa model.

As one continues to add more dark energy parameters to the model, the degeneracies between
these parameters and h increase, but another effect arises that diminishes the impact of SN data
on σh. Measurement of the Hubble constant requires relating observed quantities at z > 0 (e.g.
SN distances) to the expansion rate at z = 0. In the case of ΛCDM or the w0–wa model, the
assumed dark energy evolution is simple enough that this relation between z = 0 and low-redshift
observations is largely set by the model. However, when we specify w(z) by a large number of
independent bins in redshift, this relation must instead be determined by the data, which requires
that the data have sufficient resolution in redshift near z = 0. For the default SN bins of width
0.2 in redshift, nearly 7 of the 36 wi bins fall within the first bin at 0 < z < 0.2. Consequently,
changes in the lowest-redshift wi value, which is strongly degenerate with h, have little effect on
the SN data (Mortonson et al., 2009a). Dividing SNe into finer redshift bins makes it harder for
variations in the lowest-redshift wi to remain hidden in the SN data, thus restoring some of the
sensitivity of SN data to the Hubble constant (see the right panel of Figure 12). Note that because
BAO observations are tied to the distance scale of the CMB, they retain their sensitivity to h even
in the absence of low-redshift constraints. For example, if we drop the 3 lowest-redshift BAO bins
(z < 0.231) entirely from the fiducial forecast with binned w(z) (see Table 3), then the change
in σh as BAO errors change from half to four times the fiducial errors is 0.22 → 0.44, compared
to 0.14 → 0.42 when the three lowest redshift bins are included. On the other hand, SN data
only contribute to measurements of h in the most general dark energy parameterizations if they
have a low redshift component that can be accurately compared with the sample of SNe at higher
redshifts.

While fine binning in redshift is not necessary for BAO data to contribute to constraints on
general dark energy models, it can help. Measurements of H(z) and D(z) in narrower bins are
better able to constrain rapid variations in w(z). They can also reduce uncertainty in the Hubble
constant by a factor of 2–3, and in other parameters such as ΩK , ln G9, and ∆γ by a smaller
amount, relative to measurements in wide bins. However, in practice one cannot reduce the bin
size indefinitely, since each bin must contain enough objects to be able to robustly identify and
locate the BAO peak; for example, requiring that the bin be at least wide enough to contain pairs of
objects separated by ∼ 100h−1 Mpc along the line of sight sets a lower limit of ∆z/(1 + z) & 0.03.
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Figure 10 Same as Fig. 8, but varying WL errors from fiducial×4 (red) to fiducial/2 (black). Lower
panels assume the optimistic WL forecasts.

We do not attempt to optimize the choice of bins for the simplified forecasts in this section, but we
note that binning schemes in analyses of BAO data aimed at constraining general w(z) variations
should be chosen with care to avoid losing information about dark energy evolution and other
parameters. Similar concerns are likely to apply for WL data as well.

3.3.4. Constraints on w(z) in the general model

So far, in the context of general dark energy evolution we have only considered the forecast errors
on parameters such as h and ΩK that are partially degenerate with w(z). But how accurately can
w(z) itself be measured when we do not restrict it to specific functional forms? Since the errors
on wi values in different bins are typically strongly correlated with each other, it is not very useful
to simply give the expected wi errors, marginalized over all other parameters. Instead, we can
consider combinations of the wi that are independent of one another and ask how well each of these
combinations can be measured by the fiducial program of observations.

As mentioned in §2.2, many methods for combining w(z) bins into independent (or nearly
independent) components have been proposed. Here we adopt the principal component (PC) de-
composition of the dark energy equation of state. Starting from the Fisher matrix for the combined
acceleration probes, the PCs are computed by first marginalizing the Fisher matrix over everything
except for the wi parameters and then diagonalizing the remaining matrix, as described above in
§3.2. The shapes of the three best-measured PCs for the fiducial program (with both fiducial and
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Figure 11 Dependence of σΩk
(left) and σh (right) on BAO errors for various dark energy

parametrizations and priors. For the wi curves, the equation of state varies independently in
36 bins with Gaussian priors of width σwi

= ∆w/
√

∆a. The fiducial versions of the Stage IV SN,
WL, and CMB data are included in all cases.

optimistic WL assumptions) and some simple variations are plotted in Figure 13. In general, the
structure of the PCs is similar in all cases; for example, the combination of wi that is most tightly
constrained is typically a single, broad peak at z < 1, while the next best-determined combination
is the difference between w(z ∼ 0.2) and w(z ∼ 1). However, variations in the forecast assumptions
slightly alter the shape of each PC and, in particular, shift the redshifts at which features in the
PC shapes appear. Changes in the location of the peak in the first PC mirror the dependence of
the pivot redshift zp for the w0–wa model in Tables 5–7, with improved SN data decreasing the
peak redshift and improved BAO data increasing it. The direction and magnitude of these shifts
reflects the redshift range that a particular probe is most sensitive to and the degree to which that
probe contributes to the total constraints on w(z). Note that so far we have only considered the
impact of forecast assumptions on the functional form of PCs, and not on the precision with which
each PC can be measured. In general, altering the forecast model changes both the PC shapes and
PC errors, which complicates the comparison among expected PC constraints from different sets
of forecasts.

Comparing the top and bottom rows of panels in Figure 13, we see again the contrast between
the fiducial WL forecast and the “WL-opt” forecast with reduced systematic errors. In the former
case, decreasing WL errors by a factor of two has a negligible effect on the PC shapes relative to
similar reductions in SN or BAO errors. However, when we take WL-opt as the baseline forecast
the PCs depend more on the precision of WL measurements and less on that of the SN or BAO
data.

The full set of PCs for the fiducial program is shown in Figure 14, and the forecast errors on the
PC amplitudes are listed in Table 8. The best-measured, lowest-variance PCs vary smoothly with
redshift, corresponding to averaging w(z) over fairly broad ranges in z. There is a clear trend of
increasingly high frequency oscillations for higher PCs. Visual inspection of Figure 14 shows that
the sum of the number of peaks and the number of troughs in the PC is equal to the index of the
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Figure 12 Dependence of σh on SN errors for various dark energy parametrizations and priors,
including the fiducial BAO, WL, and CMB forecasts. Constraints in the left panel assume the
“SNc4” forecast with 4 redshift bins at z < 0.8 including a correlated systematic error between
bins with correlation length ∆zc = 0.2 (see eq. 49 and Table 4 for details). The right panel uses
the “SNc16” forecast, which uses the same redshift correlation model but increases the number of
bins at z < 0.8 to 16.

PC, a pattern that continues at least up to PC 12. Higher PCs often change sign between adjacent z
bins. High frequency oscillations in w(z) are poorly measured by any combination of cosmological
data because the evolution of the dark energy density, which determines H(z), depends on an
integral of w(z) (eq. 22), and D(z) and G(z) depend (approximately) on integrals of H(z). Rapid
oscillations in w(z) tend to cancel out in these integrals. Many of the most poorly-measured PCs
depend on the chosen BAO binning scheme, since narrower BAO bins can better sample rapid
changes in w(z). As an example, we show how the PCs of the fiducial program are affected by
doubling the number of BAO bins in Figure 14.

The maximum redshift probed by SN, BAO, and WL data, primarily set by the highest-redshift
BAO constraint at z = 3 in our forecasts, imprints a clear signature in the set of PCs in Figure 14.
At high redshift, specifically z > 3 (a < 0.25), all but the six highest-variance PCs have almost
no weight. Conversely, the last six PCs only vary significantly at high redshift and are nearly flat
for z < 3; additionally, the errors on these PCs are many times larger than those of the first 30
PCs.16 Thus, w(z) variations above and below z = 3 are almost completely decoupled from each
other in the fiducial forecasts, and the high-redshift variations are effectively unconstrained. CMB
data limit the equation of state at z > 3 to some extent, for example, through comparison of
the measured distance to the last scattering surface with the distance to z = 3 measured in BAO
data. However, such constraints are very weak when split among several independent w(z) bins
at high redshift. Furthermore, since the dark energy density typically falls rapidly with increasing
redshift, variations in w(z) at high redshift are intrinsically less able to affect observable quantities
than low-redshift variations, resulting in reduced sensitivity to the high-redshift equation of state

16Note that our wi parameterization has exactly (0.25 − 0.1)/0.025 = 6 bins at 3 < z < 9 and 30 bins at z < 3.
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Figure 13 The three best-measured PCs for the fiducial program (solid curves) and from programs
with SN, BAO, or WL errors halved (as labeled). The top row uses the fiducial version of the WL
forecast, while the bottom row uses the optimistic WL forecast with reduced systematic errors.
Although not indicated in the plot legends, all forecasts here include the default Planck CMB
Fisher matrix. For all PCs shown here, ei(z) is nearly zero for 3 < z < 9.

even in the presence of strong constraints at earlier epochs. Likewise, variations in w(z) at even
higher redshifts of z > 9, where we assume that w is fixed to −1, are unlikely to significantly affect
constraints on w(z) at low redshift.17.

Figure 15 shows how the inverse variance σ−2
i of the 10 best-measured w(z) PCs increases

relative to the fiducial program if we halve the errors on the SN, BAO, or WL data. Following
Albrecht et al. (2009), when computing these ratios σ−2

(2)i/σ
−2
(1)i (where 1 denotes the fiducial program

and 2 the improved program), we first limit PC variances to unity by making the substitution
σ−2

i → 1+σ−2
i , so that uninteresting improvements in the most poorly-measured PCs do not count

in favor of a particular forecast. We caution that, as noted earlier, the PC shapes themselves are
changing as we change the errors assumed in the forecast, so σ2

(2)i and σ2
(1)i are not variances of

identical w(z) components. However, as shown in Figure 13, these changes are not drastic if we
consider factor-of-two variations about our fiducial program.

The differences in σ−2
i ratios among improvements in SN, BAO, and WL errors is striking.

Relative to the fiducial program, reduced SN errors mainly contribute to knowledge of the first

17This partly depends on the choice of fiducial model at which the Fisher matrix used to construct the PCs is
computed. Taking a fiducial model with a larger dark energy density at high redshift than in ΛCDM makes the
low-redshift PC shapes more sensitive to assumptions about the high-redshift equation of state (e.g., de Putter and
Linder (2008))
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Figure 14 PCs for the fiducial program (solid blue curves). Dotted red curves double the number
of bins used for BAO data from the default choice of 20 to 40.

Table 8 Errors on PC amplitudes for the fiducial program (shown in Fig. 14) and with the optimistic
WL forecast.

i σfid
i σopt

i i σfid
i σopt

i i σfid
i σopt

i i σfid
i σopt

i

1 0.011 0.009 10 0.138 0.109 19 0.398 0.311 28 1.263 0.760
2 0.019 0.015 11 0.147 0.134 20 0.417 0.353 29 1.685 0.871
3 0.029 0.021 12 0.170 0.142 21 0.551 0.403 30 2.406 2.073
4 0.042 0.029 13 0.182 0.157 22 0.570 0.429 31 6.117 5.827
5 0.056 0.039 14 0.189 0.178 23 0.571 0.472 32 12.17 18.88
6 0.070 0.051 15 0.238 0.218 24 0.630 0.580 33 16.02 24.98
7 0.087 0.065 16 0.249 0.239 25 0.736 0.585 34 24.86 45.88
8 0.101 0.078 17 0.292 0.262 26 0.925 0.594 35 61.03 96.81
9 0.118 0.096 18 0.318 0.283 27 1.035 0.646 36 71.88 114.5
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few PCs. For the fiducial WL systematics, reducing WL errors helps to better measure several of
the highest-variance PCs, but it makes little difference to the well measured PCs. Reducing BAO
errors tightens constraints on nearly all of the PCs, with the greatest impact in the intermediate
range between the SN and WL contributions. Assuming the optimistic WL errors gives much
greater weight to WL improvements, which now produce the largest improvement in the first
five PCs (right panel of Figure 15). The trends for reducing SN or BAO errors are similar to
before, but the magnitude of their effect is smaller because they are competing with tighter WL
constraints. The trends for the σ−2

i ratios of the best-measured PCs mirror those shown for the
DETF FoM in Figure 5. With the fiducial WL systematics, BAO measurements have the greatest
leverage, followed by SN, and the impact of reducing WL errors is small. With the optimistic WL
systematics, on the other hand, reducing WL errors makes the largest difference, followed by BAO,
followed by SN.

Figure 15 Ratios of inverse variances of PC amplitudes for variants of the fiducial program to the
fiducial inverse variances (points and solid curves). Each variant divides SN, BAO, or WL errors
by a factor of 2 while keeping other probes fixed at the fiducial errors. The left panel assumes the
default WL forecast and the right panel assumes the optimistic version. Dotted curves in the left
panel use σ̂i instead of σi, which describes how well the amplitudes of the fiducial set of PCs are
expected to be measured by some variant of the fiducial forecast.

Dotted curves in the left hand panel show the σ−2
i ratios when we fix the PCs to be those of the

fiducial program. In this case, the PC errors for the improved programs are no longer uncorrelated,
but the correlation coefficient of errors among any pair of PCs is less than 0.5 in nearly all cases.
Results are similar to before except for the first component (first two components for BAO). These,
of course, show less improvement when they are fixed to be those of the fiducial program rather
than shifting to be the components best determined by the improved data.

Other figures of merit for PC constraints have been defined in the literature, each of which may
be useful for different purposes. These include the determinant of Fw, which characterizes the total
volume of parameter space allowed by a particular combination of experiments, in analogy to the
DETF FoM for the w0–wa parameter space, and the sum of the inverse variances of the PCs, which
is typically less sensitive to changes in the errors of the most weakly constrained PCs (Huterer
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Figure 16 Ratios of inverse variances of PC amplitudes of Stage IV to those of Stage III, assuming
either the fiducial or optimistic versions of the Stage IV WL forecast.

and Turner, 2001; Albrecht et al., 2006; Albrecht and Bernstein, 2007; Wang, 2008; Barnard et al.,
2008; Albrecht et al., 2009; Crittenden et al., 2009; Amara and Kitching, 2010; Mortonson et al.,
2010; Shapiro et al., 2010; Trotta et al., 2010; March et al., 2011).

Examples of these FoMs for the fiducial program and the variants considered in Figure 15 are
listed in Table 9. Here we allow the PC basis to change with the forecast assumptions, so Fw is
diagonal and detFw =

∏36
i=1 σ−2

i . As with the ratios of PC variances in Figure 15, we restrict the
variances to be less than unity by replacing σ−2

i → 1 + σ−2
i . The other FoM, computed as the sum

of inverse variances, requires no such prior because PCs with large variances contribute negligibly
to the sum. Note that the choice of PC FoM definition can affect decisions about whether one
experiment or another is optimal; for example, halving WL errors (assuming fiducial systematics)
relative to the fiducial model increases the detFw FoM more than halving SN errors, but the
opposite is true for the sum of inverse variances, which favors improvements in the best-measured
PCs and more closely tracks the DETF FoM. In this case, at least, we regard the latter measure
as a better diagnostic, since the improvements for PCs that are poorly measured in any case seem
unlikely to reveal departures from a cosmological constant or other simple dark energy models.

Table 9 Examples of PC FoMs for selected forecasts, with the DETF FoM for comparison.

Forecast case log
∏36

i=1

(
1 + σ−2

i

)1/2
(
∑36

i=1 σ−2
i )1/2 [σ(wp)σ(wa)]

−1

[SN,BAO,WL,CMB] 21.1 116 533
[SN/2,BAO,WL,CMB] 21.6 153 903
[SN,BAO/2,WL,CMB] 27.9 181 1070
[SN,BAO,WL/2,CMB] 22.2 133 671
[SN,BAO,WL-opt,CMB] 23.7 150 687
[SN/2,BAO,WL-opt,CMB] 24.1 180 981
[SN,BAO/2,WL-opt,CMB] 29.5 201 1129
[SN,BAO,WL-opt/2,CMB] 26.5 235 1309
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The disagreement between different PC FoMs in Table 9 highlights one of the difficulties with
using PCs or related methods for evaluating the potential impact of future experiments. Forecasts
for PCs provide a wealth of information in both the redshift-dependent shapes of the PCs and
the expected errors on their amplitudes, but it is often difficult to interpret what this information
implies about cosmic acceleration. Given a set of forecasts for PCs, one can easily compute the
expected constraints on any specific model for w(z) by expressing the model in terms of the PC
amplitudes (eq. 57); this is a potentially useful application, but it makes very limited use of the
available information.

More generally, we can use the forecast PC shapes and errors to try to visualize what types of
w(z) variations are allowed by a certain combination of experiments. One approach is to generate
several random w(z) curves that would be consistent with the forecast measurements. This method
is easily implemented with the PCs because the errors on different PC amplitudes are uncorrelated.
One can generate a random realization of w(z) by simply drawing an amplitude αi from a Gaussian
distribution with mean zero and width σi, then using equation (58) to compute w(z) corresponding
to the randomly-drawn αi values.

Figure 17 Reconstruction of w(z) from PC constraints. Left: 20 randomly-generated models that
would be indistinguishable from a cosmological constant using the fiducial program of experiments.
Three of the 20 models are highlighted (in red, green, and blue) to more clearly show examples
of the evolution with redshift. The lower panel shows the average of 1 + w(z) in bins of width
∆z = 0.4 for the same models as in the upper panel. Points along the w(z) = −1 line in the upper
panel mark the centers of the bins in which w(z) is allowed to vary in our forecasts. Right: w(z)
reconstruction including a prior of the form in equation (61). The upper panel shows a random
selection of models consistent with this prior, but without including any data, and the lower panel
shows examples of models that are allowed by both the prior and the data assumed in the fiducial
program.

In the upper left panel of Figure 17, we use this method to plot several w(z) models using the
fiducial program PC shapes and errors from Figure 14 and Table 8, respectively. We cut off the
plot at z = 3, since w(z) variations at higher redshifts are essentially unconstrained by the fiducial
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experiments. Even at lower redshifts, though, the allowed w(z) variations are enormous, with wi

values often changing by 10 or more from one bin to the next. (Recall that our prior corresponds
to a Gaussian of width σwi

≈ 63 per bin, eq. 55.) Compared to the ∼ 1.5% constraints on wp in
the w0–wa model, this forecast looks rather depressing. The consequence of allowing the equation
of state to be a free function of redshift is that it is nearly impossible to say with any certainty
what the value of w is at a specific redshift, because rapid oscillations in w(z) have tiny effects on
observables. The allowed range of variations would be even larger if we considered a model with
finer ∆a bins.

The large variations of w(z) in Figure 17 are driven by the poorly constrained PCs, which have
many oscillations in w(z), peak-to-peak amplitudes |∆w| ∼ 4, and normalization uncertainties
σi ∼ 0.1 − 2.4 (see Figure 14 and Table 8). The lower left panel of Figure 17 shows these w(z)
realizations averaged over bins of width ∆z = 0.4, which vastly reduces the range of variations,
especially at z ∼ 1. However, the dispersion of w(z) in the bins centered at z = 0.6 and z = 1 is
still about 0.25.

Instead of averaging w(z) over wide redshift bins, one can impose a theoretical prejudice for
models with smoothly-varying equations of state by adding an off-diagonal prior to the Fisher
matrix, imposing correlations among the wi that are closely separated in redshift. Here we follow
Crittenden et al. (2009), but we modify their method to use scale factor rather than redshift as the
independent variable, adopting a correlation function

ξ(|ai − aj |) =
(∆w)2

π∆ac

[
1 +

(
ai − aj

∆ac

)2
]−1

, (60)

where ∆w sets the amplitude of allowed w(z) variations and ∆ac is the correlation length. Following
the calculation in Crittenden et al. (2009), the covariance matrix for the wi bins, which is the inverse
of the prior Fisher matrix for those parameters, is

[F prior
ij ]−1

(i,j≤36) =
(∆w)2∆ac

π∆a2


x+ tan−1 x+ + x− tan−1 x− − 2x̄ tan−1 x̄ + ln


 1 + x̄2

√
(1 + x2

+)(1 + x2
−)





 ,

(61)
where x̄ = |i − j|∆a/∆ac, x+ = (|i − j| + 1)∆a/∆ac, and x− = (|i − j| − 1)∆a/∆ac. In the
limit ∆ac → 0, this reduces to our default diagonal prior on the wi parameters with width σwi

=
∆w/

√
∆a.

The upper right panel of Figure 17 shows models randomly drawn from this prior with ∆w/
√

∆a =
1 and ∆ac = 0.2. The influence of the correlation function is clearly evident in the smoother, lower-
amplitude variations of w(z) in these models, and yet the range of possible models is still much
greater than for simpler parameterizations like w0–wa. Combining this prior with the assumed
data set of the fiducial Stage IV program, we obtain the w(z) realizations plotted in the lower right
panel of Figure 17. Even more so than averaging w(z) in wide redshift bins, including this type of
prior significantly narrows the constraints on w(z).

Our constraints on general w(z) models account for the possibility of modified gravity by
marginalizing over the structure growth parameters ∆γ and ln G9. If we instead restrict our anal-
ysis to GR by fixing ∆γ = ln G9 = 0, the main effect is that the dark energy equation of state at
high redshifts, w(3 < z < 9), is better constrained since the CMB measurement of the power spec-
trum amplitude at z ∼ 1000 can be more directly related to WL measurements of growth at lower
redshifts. Because of the additional CMB constraint on the distance to the last scattering surface,
w(3 < z < 9) is strongly correlated with Ωk, and therefore assuming GR considerably improves the
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determination of spatial curvature in the binned w(z) parameterization. For our fiducial forecasts,
assuming ∆γ = ln G9 = 0 lowers σΩk

by a factor of ∼ 5 (0.0125 → 0.0025); note that this is still
several times larger than the error in Ωk for the simpler ΛCDM or w0–wa forecasts.

4. Conclusions

Appendix A. Acronym Glossary

ACT = Atacama Cosmology Telescope
ADEPT = Advanced Dark Energy Physics Telescope
BAO = Baryon Acoustic Oscillations
BOSS = Baryon Oscillation Spectroscopic Survey
CMB = Cosmic Microwave Background
DES = Dark Energy Survey
DESTINY = Dark Energy Space Telescope
DUNE = Dark Universe Explorer
ESA = European Space Agency
GR = General Relativity
HETDEX = Hobby-Eberly Telescope Dark Energy Experiment
JDEM = Joint Dark Energy Mission
JEDI = Joint Efficient Dark-energy Investigation
LASST = Large Area Synoptic Survey Telescope
LSST = Large Synoptic Survey Telescope
NASA = National Aeronautics and Space Administration
NOAO = National Optical Astronomy Observatories
Pan-STARRS = Panoramic Survey Telescope and Rapid Response System
SDSS = Sloan Digital Sky Survey
SKA = Square Kilometer Array
SNAP = Supernova Acceleration Probe
SPT = South Pole Telescope
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